Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of service...Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of services in the controllable distributed information system are analyzed as the preparatory work.Using the idea of service composition as a reference,the approach translates the recovery decision-making into a planning problem regarding artificial intelligence (AI) through two steps.The first is the self-organization based on a logical view of the network,and the second is the definition of evaluation standards.Applying Bellman dynamic programming to solve the planning problem,the approach offers timely emergency response and optimal recovery source selection,meeting multiple QoS (quality of service)requirements.Experimental results demonstrate the rationality and optimality of the approach,and the theoretical analysis of its computational complexity and the comparison with conventional methods exhibit its high efficiency.展开更多
This paper deals with the jointed decision question on ordering and pricing for a short-life-cycle product under stochastic multiplicative demand depended selling price. According to the marketing practices, which ret...This paper deals with the jointed decision question on ordering and pricing for a short-life-cycle product under stochastic multiplicative demand depended selling price. According to the marketing practices, which retailers sell their products in different periods with the different marketing policies, we depict the jointed decision question with a stochastic dynamic programming model from the view of the centralized system. Then, we prove that the expected profit function are concave on decision vectors respectively, and develop the decision method for ordering and pricing. Lastly, we design the iterative search arithmetic to find the optimal decision vectors.展开更多
文摘Based on service-oriented architecture(SOA),a Bellman-dynamic-programming-based approach of service recovery decision-making is proposed to make valid recovery decisions.Both the attribute and the process of services in the controllable distributed information system are analyzed as the preparatory work.Using the idea of service composition as a reference,the approach translates the recovery decision-making into a planning problem regarding artificial intelligence (AI) through two steps.The first is the self-organization based on a logical view of the network,and the second is the definition of evaluation standards.Applying Bellman dynamic programming to solve the planning problem,the approach offers timely emergency response and optimal recovery source selection,meeting multiple QoS (quality of service)requirements.Experimental results demonstrate the rationality and optimality of the approach,and the theoretical analysis of its computational complexity and the comparison with conventional methods exhibit its high efficiency.
基金This research is partly supported by National Natural Science Foundation of China (70473037), the Innovation Fund for PhD Candidate of NUAA(4003-019010), and the Science and Technology Foundation of Henan Education Committee(2006120004).
文摘This paper deals with the jointed decision question on ordering and pricing for a short-life-cycle product under stochastic multiplicative demand depended selling price. According to the marketing practices, which retailers sell their products in different periods with the different marketing policies, we depict the jointed decision question with a stochastic dynamic programming model from the view of the centralized system. Then, we prove that the expected profit function are concave on decision vectors respectively, and develop the decision method for ordering and pricing. Lastly, we design the iterative search arithmetic to find the optimal decision vectors.