In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and time...In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.展开更多
This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the stu...This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit(IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed.The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.展开更多
Based on the 1983~2011 CMAP data,the precipitation anomaly in East Asia and its nearby sea regions(hereafter called East Asia for short) demonstrates the "+-+" pattern before 1999 and the "-+-" pattern afterw...Based on the 1983~2011 CMAP data,the precipitation anomaly in East Asia and its nearby sea regions(hereafter called East Asia for short) demonstrates the "+-+" pattern before 1999 and the "-+-" pattern afterwards; this decadal change is contained principally in the corresponding EOF3 component.However,the NCC_CGCM forecast results are quite different,which reveal the "+-+-" pattern before 1999 and the "-+-+" pattern afterwards.Meanwhile,the probability of improving NCC_CGCM's forecast accuracy based on these key SST areas is discussed,and the dynamic-statistics combined forecast scheme is constructed for increasing the information of decadal change contained in the summer precipitation in East Asia.The independent sample forecast results indicate that this forecasting scheme can effectively modify the NCC_CGCM's decadal change information contained in the summer precipitation in East Asia(especially in the area of 30°N–55°N).The ACC is 0.25 and ACR is 61% for the forecasting result based on the V SST area,and the mean ACC is 0.03 and ACR is 51% for the seven key areas,which are better than NCC_CGCM's system error correction results(ACC is -0.01 and ACR is 49%).Besides,the modified forecast results also provide the information that the precipitation anomaly in East Asia mainly shows the "+-+" pattern before 1999 and the "-+-" pattern afterwards.展开更多
基金supported by the Research and Innovation Program for College and University Graduate Students in Jiangsu Province (No.CX10B-141Z)the National Natural Science Foundation of China (No. 41071273)
文摘In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.
基金supported by the National Natural Science Foundation of China(Grant Nos.41230420,41376018&41606012)
文摘This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit(IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed.The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.
基金supported by the National Basic Research Program of China(Grant No.2012CB955203)the National Natural Science Foundation of China(Grant Nos.41205040,41105055)the Special Scientific Research Project for Public Interest(Grant No.GYHY201306021)
文摘Based on the 1983~2011 CMAP data,the precipitation anomaly in East Asia and its nearby sea regions(hereafter called East Asia for short) demonstrates the "+-+" pattern before 1999 and the "-+-" pattern afterwards; this decadal change is contained principally in the corresponding EOF3 component.However,the NCC_CGCM forecast results are quite different,which reveal the "+-+-" pattern before 1999 and the "-+-+" pattern afterwards.Meanwhile,the probability of improving NCC_CGCM's forecast accuracy based on these key SST areas is discussed,and the dynamic-statistics combined forecast scheme is constructed for increasing the information of decadal change contained in the summer precipitation in East Asia.The independent sample forecast results indicate that this forecasting scheme can effectively modify the NCC_CGCM's decadal change information contained in the summer precipitation in East Asia(especially in the area of 30°N–55°N).The ACC is 0.25 and ACR is 61% for the forecasting result based on the V SST area,and the mean ACC is 0.03 and ACR is 51% for the seven key areas,which are better than NCC_CGCM's system error correction results(ACC is -0.01 and ACR is 49%).Besides,the modified forecast results also provide the information that the precipitation anomaly in East Asia mainly shows the "+-+" pattern before 1999 and the "-+-" pattern afterwards.