期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
基于动态步长交替方向乘子法正则化极限学习机
1
作者 卢辉煌 邹伟东 李钰祥 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第3期264-273,共10页
为解决交替方向乘子法(alternating direction method of multipliers,ADMM)正则化极限学习机(regularized extreme learning machine,RELM)迭代收敛速度慢和迭代后期误差衰减停滞的问题,提出一种基于动态步长ADMM的正则化极限学习机,记... 为解决交替方向乘子法(alternating direction method of multipliers,ADMM)正则化极限学习机(regularized extreme learning machine,RELM)迭代收敛速度慢和迭代后期误差衰减停滞的问题,提出一种基于动态步长ADMM的正则化极限学习机,记为VAR-ADMM-RELM.该算法在ADMM算法的基础上采用动态衰减步长进行迭代,并同时使用L1和L2正则化对模型复杂度进行约束,解得具有稀疏性和鲁棒性的极限学习机输出权重.在UCI和MedMNIST数据集中对VAR-ADMM-RELM、极限学习机(extreme learning machine,ELM)、正则化极限学习机(regularized ELM,RELM)和基于ADMM的L1正则化ELM(ADMMRELM)进行拟合、分类和回归对比实验.结果表明,VAR-ADMM-RELM算法的平均分类准确率和平均回归预测精度分别比ELM算法提升了1.94%和2.49%,较标准ADMM算法可以取得3~5倍的速度提升,且对异常值干扰具有更好的鲁棒性和泛化能力,在高维度多样本的场景下建模效率逼近标准极限学习机.该方法有效提升了ADMM算法的收敛速度,取得了比主流ELM算法更加优秀的性能表现. 展开更多
关键词 人工智能 学习 极限学习 交替方向乘子法 正则化 动态衰减
下载PDF
基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱预测研究
2
作者 任宝峰 祁卫国 +2 位作者 肖占云 撒兴涛 贾然 《承德石油高等专科学校学报》 CAS 2024年第3期9-13,共5页
为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化... 为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化,使其不仅有良好的局部搜索能力,同时也加强了全局搜索能力。将该方法应用于某品牌的真伪卷烟预测,试验结果表明:该模型拥有更好的预测精度,为真伪卷烟拉曼光谱预测提供了一种新思路。 展开更多
关键词 卷烟 真伪鉴别 拉曼光谱 混合核极限学习 贝叶斯优化
下载PDF
基于优化的灰色关联分析-极限学习机食用油污染物风险评价模型研究 被引量:2
3
作者 于家斌 范依云 +5 位作者 王小艺 赵峙尧 金学波 白玉廷 王立 陈慧敏 《食品科学》 EI CAS CSCD 北大核心 2023年第3期88-97,共10页
近年来食用油安全事故频发,为降低这类事件的威胁,对其风险评价模型进行研究有着极其重要的意义。针对目前食用油检测数据高维性、非线性、离散性和含噪声的特点,现有风险评价模型存在噪声抑制能力差、评价不准确和模型参数调整主观性... 近年来食用油安全事故频发,为降低这类事件的威胁,对其风险评价模型进行研究有着极其重要的意义。针对目前食用油检测数据高维性、非线性、离散性和含噪声的特点,现有风险评价模型存在噪声抑制能力差、评价不准确和模型参数调整主观性强等问题。对此,本实验提出一种食用油污染物风险评价模型。首先进行风险指标筛选以及数据预处理,然后将处理后的数据输入到基于小波阈值法的滤波模块中进行滤波,随后通过灰色关联分析计算各风险指标的权重来制定多指标综合风险值标签;由极限学习机(extreme learning machine,ELM)对综合风险值进行预测,在上述过程中利用实用贝叶斯优化算法分别来优化滤波模块和ELM网络的参数;最后利用模糊综合分析对预测综合风险值进行风险等级划分。本研究依托150组食用油数据进行分析,详细阐述了该模型的使用流程,通过不同模型对比实验,本研究模型决定系数R2和均方根误差分别为0.0563和0.9461,进一步验证了方法的优越性和有效性,可以为相关部门制定风险控制策略、抽检策略以及优化加工链提供更为合理的依据。 展开更多
关键词 食用油安全 风险评价 灰色关联分析 极限学习 实用贝叶斯优化
下载PDF
基于稀疏贝叶斯极限学习机的光伏电站设备故障诊断研究 被引量:17
4
作者 孙莉 李静 +1 位作者 李继云 王磊 《太阳能学报》 EI CAS CSCD 北大核心 2020年第8期221-226,共6页
基于运维数据针对光伏(PV)电站逆变器的故障诊断进行研究,提出一种基于稀疏贝叶斯极限学习机(SBELM)的精准的光伏逆变器故障诊断方法。首先分析逆变器故障数据特征,将该问题转化为一个多分类问题;然后,采用合成少数类过采样技术(SMOTE)... 基于运维数据针对光伏(PV)电站逆变器的故障诊断进行研究,提出一种基于稀疏贝叶斯极限学习机(SBELM)的精准的光伏逆变器故障诊断方法。首先分析逆变器故障数据特征,将该问题转化为一个多分类问题;然后,采用合成少数类过采样技术(SMOTE)方法人工生成数据,解决数据不均衡问题,根据环境和逆变器实时监控据提取特征向量,并通过SBELM训练模型,可给出输出的概率分布,自动修剪冗余的隐藏节点,在不影响性能的前提下实现用部分节点进行多故障分类。通过实验分析,相比于其他故障诊断方法,SBELM诊断速度快且精度高,更适用于诊断光伏逆变器的故障。 展开更多
关键词 光伏电站设备 故障诊断 逆变器 稀疏贝叶斯极限学习 SMOTE 学习
下载PDF
混合动力汽车电池内部状态预测的贝叶斯极限学习机方法 被引量:5
5
作者 王琪 孙玉坤 +3 位作者 倪福银 陈泰洪 陈连玉 罗印升 《中国机械工程》 EI CAS CSCD 北大核心 2016年第22期3118-3123,共6页
针对混合动力汽车(HEV)电池内部状态预测问题,引入贝叶斯极限学习机(BELM)方法。对BELM的基本原理进行了详细介绍,在高级车辆仿真软件ADVISOR中采集HEV电池的各项性能参数,包括电压、电流、温度和内阻等。基于此,将BELM应用于电池的荷... 针对混合动力汽车(HEV)电池内部状态预测问题,引入贝叶斯极限学习机(BELM)方法。对BELM的基本原理进行了详细介绍,在高级车辆仿真软件ADVISOR中采集HEV电池的各项性能参数,包括电压、电流、温度和内阻等。基于此,将BELM应用于电池的荷电状态(SOC)和健康状态(SOH)的预测,同时考虑电池老化对内部状态预测效果的影响。BELM预测结果表明:所设计的预测模型具有较高的精度,能够实时准确地预测出电池的SOC和SOH值。 展开更多
关键词 贝叶斯极限学习 混合动力汽车 荷电状态 健康状态
下载PDF
基于极限学习机的复杂制造系统动态调度 被引量:3
6
作者 马玉敏 陆晓玉 +1 位作者 乔非 沈一路 《计算机集成制造系统》 EI CSCD 北大核心 2021年第4期1081-1088,共8页
为提高复杂制造系统动态调度的有效性,提出一种数据驱动的动态调度方法。采用组合式调度规则作为调度策略,通过试验设计方法对调度样本数据进行优化;采用模糊C均值聚类算法和极限学习机算法对最优样本集进行聚类和学习,得到调度模型供... 为提高复杂制造系统动态调度的有效性,提出一种数据驱动的动态调度方法。采用组合式调度规则作为调度策略,通过试验设计方法对调度样本数据进行优化;采用模糊C均值聚类算法和极限学习机算法对最优样本集进行聚类和学习,得到调度模型供动态调度使用,有效地提高动态调度的精度和效率。所提方法在半导体制造Benchmark模型MIMAC6上进行了验证,结果显示,所提方法较单一规则的调度在制造系统长、短期性能指标上均有较大的改善,能综合优化制造系统生产性能。 展开更多
关键词 动态调度 数据驱动 极限学习 模糊C均值聚类 复杂制造系统
下载PDF
基于指数加权-核在线序列极限学习机的混沌系统动态重构研究 被引量:3
7
作者 李军 后新燕 《物理学报》 SCIE EI CAS CSCD 北大核心 2019年第10期27-39,共13页
利用指数加权在线核序列极限学习机(exponential weighted online sequential extreme learning machine with kernel, EW-KOSELM)辨识算法,开展了针对混沌动力学系统的动态重构研究. EW-KOSELM算法将核递归最小二乘(kernel recursive l... 利用指数加权在线核序列极限学习机(exponential weighted online sequential extreme learning machine with kernel, EW-KOSELM)辨识算法,开展了针对混沌动力学系统的动态重构研究. EW-KOSELM算法将核递归最小二乘(kernel recursive least squares, KRLS)算法直接延伸至在线ELM (extreme learning machine)框架中,通过引入遗忘因子削弱了旧数据的影响,并基于"固定预算(fixed-budget, FB)"内存技术,应对在线核学习算法所固有的规模不断增长的计算困难.将所提辨识算法应用于Duffing-Ueda振子的混沌动力学系统数值仿真实例中,对基于FB-EW-KOSELM的辨识模型与原系统的动态性能进行了定性与定量的分析校验,定性校验准则是基于对比辨识模型与原系统吸引子(轨迹嵌入)、庞加莱映射、分岔图、极限环完成的,定量校验准则包括对比辨识模型与原系统的李雅普诺夫指数与关联维.进一步将其分别应用于来自测量蔡氏电路产生双涡卷吸引子与螺旋吸引子的实测数据实验及某一实际混沌电路所产生的时间序列中,对于具有低信噪比的实测电压或电流数据还需进行了小波降噪预处理.通过分析辨识模型重构吸引子,实验结果表明,FB-EW-KOSELM算法具有良好的动态重构性能,能精确地再生出展示混沌动态行为的过程非线性模型,且具有与原混沌系统非常接近的动态不变性指标. 展开更多
关键词 动态重构 混沌系统 核方法 指数加权在线序列极限学习
下载PDF
基于极限学习机的路口动态O-D反推方法研究
8
作者 高志波 张姣 +1 位作者 韩子雯 周政川 《交通运输工程与信息学报》 2017年第3期134-140,共7页
交叉口各进出口道间的实时转向交通量是信号控制系统重要的输入数据,但难以获得。目前已有的反推模型大都是优化模型,其收敛速度较慢、精度较低,无法满足实际系统应用需要。在不考虑转向限制的条件下,选择划分参数作为问题的状态变量,... 交叉口各进出口道间的实时转向交通量是信号控制系统重要的输入数据,但难以获得。目前已有的反推模型大都是优化模型,其收敛速度较慢、精度较低,无法满足实际系统应用需要。在不考虑转向限制的条件下,选择划分参数作为问题的状态变量,建立了路口动态O-D反推模型,并设计了基于极限学习机的训练算法,通过Matlab调用ELM工具箱函数来实现了对模型的求解。实例研究可知,模型和算法具有较高的准确性以及效率,能够支持实时自适应信号控制系统的开发。 展开更多
关键词 极限学习 动态O-D反推 划分参数 激活函数
下载PDF
基于稀疏贝叶斯极限学习机算法的股票价格预测
9
作者 熊炳忠 《嘉兴学院学报》 2018年第5期106-113,共8页
股票价格模型是金融理论分析与实证分析的重要基础,学术界与金融业界对其建模预测一直保持着极大的兴趣,但由于股票价格表现出高噪声性、强非线性、随机分形结构以及长记忆效应等特点,需要融合优化算法、统计学习方法与金融学理论对其... 股票价格模型是金融理论分析与实证分析的重要基础,学术界与金融业界对其建模预测一直保持着极大的兴趣,但由于股票价格表现出高噪声性、强非线性、随机分形结构以及长记忆效应等特点,需要融合优化算法、统计学习方法与金融学理论对其建模分析。基于传统方法的股票价格过程建模预测结果往往精度不够好,所建立的模型泛化能力较差。基于稀疏贝叶斯极限学习机(SBELM)方法对股票价格进行建模预测,SBELM既能保持传统极限学习机(ELM)算法训练过程简捷的优点,又具有稀疏贝叶斯学习机自动选择隐藏层节点数的优点。利用上证综合指数2014-2015年的市场数据,比较基于SBELM方法的建模预测与基于贝叶斯极限学习机(BLEM)、ELM以及BP神经网络学习算法的建模预测,结果表明,基于SBELM方法的市场指数模型预测精度最高、泛化能力最强,具有较好的应用价值。 展开更多
关键词 稀疏贝叶斯 极限学习 股票价格 预测
下载PDF
进化贝叶斯优化的核极限学习机分类器 被引量:10
10
作者 张梦蝶 覃华 苏一丹 《计算机工程与设计》 北大核心 2022年第2期399-405,共7页
为解决传统核极限学习机算法参数优化困难的问题,提高分类准确度,提出一种改进贝叶斯优化的核极限学习机算法。用樽海鞘群设计贝叶斯优化框架中获取函数的下置信界策略,提高算法的局部搜索能力和寻优能力;用这种改进的贝叶斯优化算法对... 为解决传统核极限学习机算法参数优化困难的问题,提高分类准确度,提出一种改进贝叶斯优化的核极限学习机算法。用樽海鞘群设计贝叶斯优化框架中获取函数的下置信界策略,提高算法的局部搜索能力和寻优能力;用这种改进的贝叶斯优化算法对核极限学习机的参数进行寻优,用最优参数构造核极限学习机分类器。在UCI真实数据集上进行仿真实验,实验结果表明,相比传统贝叶斯优化算法,所提算法能提升核极限学习机的分类精度,相较其它优化算法,所提算法可行有效。 展开更多
关键词 极限学习 核参数 贝叶斯优化 进化下置信界策略 分类精度
下载PDF
基于粒子群优化在线顺序极限学习机动态环境室内定位算法 被引量:2
11
作者 韩承毅 苏胜君 +2 位作者 施伟斌 乐燕芬 李瑞祥 《数据采集与处理》 CSCD 北大核心 2022年第6期1345-1352,共8页
动态环境室内定位容易受到人员随机行动、障碍物等环境的干扰,信号强度的时变性、数据采集的不稳定性对定位算法产生很大的影响。针对该问题,本文提出了一种基于粒子群优化在线顺序极限学习机算法(Particle swarm optimization online s... 动态环境室内定位容易受到人员随机行动、障碍物等环境的干扰,信号强度的时变性、数据采集的不稳定性对定位算法产生很大的影响。针对该问题,本文提出了一种基于粒子群优化在线顺序极限学习机算法(Particle swarm optimization online sequential extreme learning machine,PSO⁃OS⁃ELM)。该算法继承了在线顺序极限学习机(Online sequential extreme learning machine,OS⁃ELM)算法的数据采集成本低、适应环境变化快、收敛速度较快且定位精度较高等特性,同时又利用粒子群优化(Particle swarm optimization,PSO)解决OS⁃ELM算法中奇异值问题和鲁棒性问题。在3种不同环境下采集数据,将PSO⁃OS⁃ELM算法、OS⁃ELM算法和WKNN算法进行实验对比。实验结果表明:在动态变化的室内环境中,PSO⁃OS⁃ELM算法定位误差较小且鲁棒性增强,优于其他算法;平均定位误差相较于其他算法减少了约15%;算法耗时性相较于传统定位算法加权K近邻算法(Weighted K⁃nearest neighbor,WKNN)算法减少了约55%。 展开更多
关键词 粒子群优化 在线顺序极限学习 接收信号强度 动态环境 室内定位
下载PDF
基于动态主元分析和极限学习机的分解炉出口温度预测 被引量:6
12
作者 王祥民 董学平 于广宇 《测控技术》 2019年第12期35-39,76,共6页
在水泥生产过程中,为了应对分解炉结构的复杂性和影响出口温度变量的多样性,提出一种动态主元分析(Dynamic Principal Component Analysis,DPCA)与极限学习机(Extreme Learning Machine,ELM)相结合的数据驱动建模预测方法用来预测分解... 在水泥生产过程中,为了应对分解炉结构的复杂性和影响出口温度变量的多样性,提出一种动态主元分析(Dynamic Principal Component Analysis,DPCA)与极限学习机(Extreme Learning Machine,ELM)相结合的数据驱动建模预测方法用来预测分解炉出口温度。通过采集的生产数据,提取影响出口温度变量的主元从而达到降维目的,将降维后的变量作为极限学习机的输入,分解炉出口温度作为极限学习机的输出。经极限学习机参数设置、训练、调整,得到出口温度预测模型。仿真验证结果表明,运用动态主元分析和极限学习机相结合的方法建立的分解炉出口温度预测模型具有良好的预测精度,且为后续出口温度的控制研究提供了依据,对水泥高效节能生产具有重要意义。 展开更多
关键词 分解炉出口温度 数据驱动建模 动态主元分析 降维 极限学习
下载PDF
基于稀疏性贝叶斯极限学习机的气动调节阀多类故障诊断 被引量:3
13
作者 谈斐祺 谢磊 王挺任 《上海应用技术学院学报(自然科学版)》 2015年第3期271-276,共6页
气动调节阀是工业过程中使用最广泛的终端执行机构之一,它的性能好坏直接影响控制回路的性能.将基于稀疏性贝叶斯的极限学习机(SBELM)方法运用于多类故障诊断,基于DAMADICS平台的典型气动调节阀多类故障模型数据通过SBELM进行训练.不仅... 气动调节阀是工业过程中使用最广泛的终端执行机构之一,它的性能好坏直接影响控制回路的性能.将基于稀疏性贝叶斯的极限学习机(SBELM)方法运用于多类故障诊断,基于DAMADICS平台的典型气动调节阀多类故障模型数据通过SBELM进行训练.不仅能根据模型的先验知识和基于最大后验概率准则(MAP)的贝叶斯思想估计出模型输出的概率分布,而且能基于设定的性能指标自动剔除无用的训练样本,用一小部分观测数据达到多故障分类的目的,能训练出一个精确且紧凑的故障诊断模型. 展开更多
关键词 气动调节阀 故障诊断 稀疏性贝叶斯极限学习
下载PDF
基于极限学习机的复材热压工段动态调度研究 被引量:1
14
作者 桂勇 冷晟 +1 位作者 吴纪元 阳祥贵 《机械制造与自动化》 2022年第3期34-38,共5页
单一启发式规则在复材热压成型工段动态调度中受到调度环境变化的影响,无法始终取得较高的热压罐利用率。为此,提出一种基于极限学习机的热压成型工段动态调度方法,从历史调度相关数据中提取训练样本数据,利用极限学习机学得有用的调度... 单一启发式规则在复材热压成型工段动态调度中受到调度环境变化的影响,无法始终取得较高的热压罐利用率。为此,提出一种基于极限学习机的热压成型工段动态调度方法,从历史调度相关数据中提取训练样本数据,利用极限学习机学得有用的调度知识模型,拟在每一个调度决策时刻,根据实时的调度环境定出最佳工件排入罐中。以某复材车间热压成型工段为例进行研究。仿真实验表明:该方法较单一启发式规则能表现出更加稳定且良好的调度结果。 展开更多
关键词 复材热压成型 动态调度 热压罐利用率 极限学习 调度知识模型
下载PDF
基于极限学习机的用电数据异常动态监测系统 被引量:1
15
作者 孙志杰 张艳丽 +1 位作者 王利赛 刘继鹏 《电子设计工程》 2022年第15期81-85,共5页
目前研究的电力系统用电数据异常监测系统的精度较差,导致监测效率较低。为了解决上述问题,设计了基于极限学习机的用电数据异常动态监测系统,系统分别设计硬件区域和软件区域。硬件区域设计了服务器接收器、芯片和接口零件、调度中心... 目前研究的电力系统用电数据异常监测系统的精度较差,导致监测效率较低。为了解决上述问题,设计了基于极限学习机的用电数据异常动态监测系统,系统分别设计硬件区域和软件区域。硬件区域设计了服务器接收器、芯片和接口零件、调度中心站、数据通信器以及监测器,硬件区域内所有器件的性能都是目前各个领域性能最佳的设备,以便达到提高基于极限学习机的用电数据异常动态监测系统运行速度的目的。在软件区域分别讨论了极限学习机的工作原理和极限学习算法,提高数据异常动态监测系统的监测训练速度和规范性,增加了格兰杰因果检验流程,对系统需要监测的数据进行检验,增加系统监测的精度。实验结果表明,基于极限学习机的用电数据异常动态监测系统的监测性能满足系统应用的指标标准,达到了系统设计的目标,可以进行推广应用。 展开更多
关键词 极限学习 用电数据 异常动态 异常监测
下载PDF
基于改进流形正则化极限学习机的短期电力负荷预测 被引量:33
16
作者 李冬辉 闫振林 +1 位作者 姚乐乐 郑宏宇 《高电压技术》 EI CAS CSCD 北大核心 2016年第7期2092-2099,共8页
为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机... 为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机;其次,针对流形正则化极限学习机中参数的选择,以及流形正则化极限学习机隐层节点选择的问题,提出将贝叶斯优化算法(BOA)融入到流形正则化极限学习机中以优化流形正则化极限学习机(MRELM)。最后,通过实验数据分析,改进流形正则化极限学习机预测方法将预测平均相对误差降低到了1.903%,30次实验的平均相对误差的方差降低到了1.9‰,平均单次运行时间降低到了6.113 s。 展开更多
关键词 短期电力负荷预测 流形正则化 极限学习 贝叶斯优化算法 平均相对误差 方差
下载PDF
基于多分类概率极限学习机的污水处理过程操作工况识别 被引量:10
17
作者 赵立杰 袁德成 柴天佑 《化工学报》 EI CAS CSCD 北大核心 2012年第10期3173-3182,共10页
污水处理过程复杂多变的运行工况以及系统脆弱的抗负荷冲击能力,常常导致污水处理厂运行目标难以实现,有效识别污水操作工况的变化对污水处理过程安全运行和操作优化十分重要。为增强未知样本分类可靠性,在概率极限学习机二分类基础上,... 污水处理过程复杂多变的运行工况以及系统脆弱的抗负荷冲击能力,常常导致污水处理厂运行目标难以实现,有效识别污水操作工况的变化对污水处理过程安全运行和操作优化十分重要。为增强未知样本分类可靠性,在概率极限学习机二分类基础上,将其扩展到多分类概率极限学习机方法 (extreme learning machine)。该方法首先采用极限学习机建立污水处理过程实时变量和污水处理过程工况编码之间的预报模型,然后根据类别的输出预报值分别建立每个类训练样本潜在函数的均值,确定所有类的条件概率密度函数,非线性最小二乘辨识条件概率密度函数参数,最后根据贝叶斯原理计算所有类的后验概率,由后验概率最大值判别样本所属类别。以辽宁某城市污水处理厂实时数据为背景进行验证,实验结果表明多分类概率极限学习机分类的可靠性和准确性优于极限学习机分类方法。 展开更多
关键词 污水处理 极限学习 贝叶斯决策 多分类
下载PDF
基于多极限学习机在线集成的柴油机故障诊断方法研究 被引量:5
18
作者 张英堂 马超 +2 位作者 尹刚 李志宁 任国全 《车用发动机》 北大核心 2012年第6期85-89,共5页
针对在线贯序极限学习机(OS-ELM)输出不稳定和过学习问题,提出了基于贝叶斯框架的多OS-ELM融合算法。首先通过在目标函数中引入输出矩阵的二范数,将线性回归问题转化为岭回归问题,改善OS-ELM的过学习问题。其次,构建多个OS-ELM分类器对... 针对在线贯序极限学习机(OS-ELM)输出不稳定和过学习问题,提出了基于贝叶斯框架的多OS-ELM融合算法。首先通过在目标函数中引入输出矩阵的二范数,将线性回归问题转化为岭回归问题,改善OS-ELM的过学习问题。其次,构建多个OS-ELM分类器对训练样本进行学习,在贝叶斯框架下实现多分类器的在线集成,以提高分类器的输出稳定性。UCI数据集的试验表明,与改进前相比,本算法的分类准确率提高了1.07%~3.35%,100次试验的标准差降低了0.001 5~0.021 4。柴油机11种工况的故障识别准确率可达到96.86%。 展开更多
关键词 柴油 极限学习 贝叶斯方法 集成学习 多尺度主元分析 故障诊断
下载PDF
基于改进极限学习机模型的岩质边坡稳定性评价与参数反演 被引量:9
19
作者 邓超 胡焕校 +1 位作者 张天乐 余童 《中国地质灾害与防治学报》 CSCD 2020年第3期1-10,共10页
岩质边坡的稳定性评价与参数确定是岩土工程领域的经典难题。基于大数据智能计算的优点,提出了一种结合变量遗忘因子的正则化在线序列极限学习机模型(FOS-ELM)的岩质边坡稳定性评价和参数确定方法。根据收集的1235例岩质边坡的几何力学... 岩质边坡的稳定性评价与参数确定是岩土工程领域的经典难题。基于大数据智能计算的优点,提出了一种结合变量遗忘因子的正则化在线序列极限学习机模型(FOS-ELM)的岩质边坡稳定性评价和参数确定方法。根据收集的1235例岩质边坡的几何力学与Hoek-Brown模型参数,应用贝叶斯信息准则(BIC)优选基于岩体强度指标(GSI)、扰动因子(D)、岩石材料常数(mi)、单轴抗压强度(σci)、岩体重度(γ)、坡高(H)、坡角(β)的最优输入组合预测边坡稳定安全系数(F),并建立7个模型对最优输入组合进行评价,论证模型的预测精度,结果表明全参数输入组合精度最高,但输入参数并不是越多越好。同经典的极限学习机模型(ELM)相比,该模型具有预测精度高、预测速度快、后期增加边坡数据无须重新训练等优点。并采用不同赋值的全参数输入模型(FOS-ELM-M7)建立边坡参数反演模型,结果表明该模型对边坡单参数和双参数的反演计算速度快、精度高,为获取岩体边坡参数提供了一种快捷的新方法。 展开更多
关键词 岩质边坡稳定性 HOEK-BROWN准则 极限学习模型 贝叶斯信息准则 稳定安全系数 参数反演
下载PDF
一种基于极限学习机融合模型的实时亚表面缺陷深度检测算法 被引量:1
20
作者 王章权 周莹 +1 位作者 周煊勇 刘半藤 《传感技术学报》 CAS CSCD 北大核心 2022年第10期1412-1417,共6页
为提高检测亚表面缺陷深度的速度与精度,提出了一种基于极限学习机融合模型的实时亚表面缺陷深度检测算法。首先,构造极限学习机模型将涡流传感器以及超声传感器探测数据转化为导体缺陷在不同深度的概率分布;然后,根据不同传感器采集特... 为提高检测亚表面缺陷深度的速度与精度,提出了一种基于极限学习机融合模型的实时亚表面缺陷深度检测算法。首先,构造极限学习机模型将涡流传感器以及超声传感器探测数据转化为导体缺陷在不同深度的概率分布;然后,根据不同传感器采集特点对概率分布进行动态赋权,并采用D-S融合模型计算缺陷深度的概率分布;最后,基于最大概率原则对未知缺陷深度的导体进行分类。实验结果表明,相比单传感器检测方法和传统D-S证据等权融合理论,所提出的检测方法具有更高的精确度和稳定性。 展开更多
关键词 无损检测 极限学习模型 动态赋权 D-S证据理论 最大隶属原则
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部