期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于等效模型电网动态过程状态估计方法 被引量:9
1
作者 赵亮 钱玉春 +1 位作者 顾全 陈根军 《电力系统保护与控制》 EI CSCD 北大核心 2010年第11期10-14,共5页
提出了一种电网动态过程状态估计算法,利用快速、带时标的PMU量测估计电网扰动后的动态过程。该算法以扰动前的静态状态估计结果作为初始断面,对PMU量测不可观测区域的电网模型进行等效处理,在有限的PMU量测条件下可获得电网扰动后动态... 提出了一种电网动态过程状态估计算法,利用快速、带时标的PMU量测估计电网扰动后的动态过程。该算法以扰动前的静态状态估计结果作为初始断面,对PMU量测不可观测区域的电网模型进行等效处理,在有限的PMU量测条件下可获得电网扰动后动态过程中的连续断面。动态过程状态估计的信息矩阵一次形成后保持恒定,可对连续的PMU量测断面进行计算,满足电网动态过程实时监视和控制的需要。对七节点系统支路故障后的扰动过程进行动态状态估计,验证了所提算法的可行性。 展开更多
关键词 相量测量单元 动态状态估计 动态过程估计 等效模型 扰动
下载PDF
Online process monitoring for complex systems with dynamic weighted principal component analysis 被引量:4
2
作者 Zhengshun Fei Kangling Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第6期775-786,共12页
Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivate... Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivated to propose a new monitoring method by compensating the principal component analysis with a weight approach.The proposed monitor consists of two tiers. The first tier uses the principal component analysis method to extract cross-correlation structure among process data, expressed by independent components. The second tier estimates auto-correlation structure among the extracted components as auto-regressive models. It is therefore named a dynamic weighted principal component analysis with hybrid correlation structure. The essential of the proposed method is to incorporate a weight approach into principal component analysis to construct two new subspaces, namely the important component subspace and the residual subspace, and two new statistics are defined to monitor them respectively. Through computing the weight values upon a new observation, the proposed method increases the weights along directions of components that have large estimation errors while reduces the influences of other directions. The rationale behind comes from the observations that the fault information is associated with online estimation errors of auto-regressive models. The proposed monitoring method is exemplified by the Tennessee Eastman process. The monitoring results show that the proposed method outperforms conventional principal component analysis, dynamic principal component analysis and dynamic latent variable. 展开更多
关键词 Principal component analysisWeightOnline process monitoringDynamic
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部