This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network ev...This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.展开更多
文摘动态路网k近邻(kNN)查询是许多基于位置的服务(LBS)中的一个重要问题。针对该问题,提出一种面向动态路网的移动对象分布式kNN查询算法DkNN(Distributed kNN)。首先,将整个路网划分为部署于集群中不同节点中的多个子图;其次,通过并行地搜索查询范围所涉及的子图得到精确的kNN结果;最后,优化查询的搜索过程,引入查询范围剪枝策略和查询终止策略。在4个道路网络数据集上与3种基线算法进行了充分对比和验证。实验结果显示,与TEN~*-Index(Tree dEcomposition based kNN~*Index)算法相比,DkNN算法的查询时间减少了56.8%,路网更新时间降低了3个数量级。DkNN算法可以快速响应动态路网中的kNN查询请求,且在处理路网更新时具有较低的更新成本。
基金"973"National Key Basic Research & Development Program "Research of the Basic Scientific Issues in the Traffic Congestion Bottlenecks of Big Cities"( No. 2006CB705500)Beijing Science & Technology Program "Research of the New Data Collection Technologies for Transportation Management " (No.D101100049710004)Beijing Science & Technology Program "Research of the Demonstration Platform for the In-tegrated Dynamic Operation Analysis of City Road Networks"(No. D07050600440704)
文摘This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.