The DLE (dry low emission) technology has already been used on industrial gas turbine combustor and the NO X emission can be limited to 25 ppmv (@15% O 2 ), but one of the destructive effects is combustion instability...The DLE (dry low emission) technology has already been used on industrial gas turbine combustor and the NO X emission can be limited to 25 ppmv (@15% O 2 ), but one of the destructive effects is combustion instability. In this paper, the dynamic and emission characteristics of a DLE gas turbine combustor have been researched in the authors' laboratory, and the results show that the key source of combustion instability is the non-uniformity of fuel in the flame zone. Two main fuel supply methods have been used to form different fuel distribution types; it is shown that in the perfectly premixed case the emission level is low and combustion process is stable. The PPF also has an obvious effect on the combustor's emission and dynamic characteristics.展开更多
基金supported by the National Natural Science Foundation of China(No.50976116and No.50806077)
文摘The DLE (dry low emission) technology has already been used on industrial gas turbine combustor and the NO X emission can be limited to 25 ppmv (@15% O 2 ), but one of the destructive effects is combustion instability. In this paper, the dynamic and emission characteristics of a DLE gas turbine combustor have been researched in the authors' laboratory, and the results show that the key source of combustion instability is the non-uniformity of fuel in the flame zone. Two main fuel supply methods have been used to form different fuel distribution types; it is shown that in the perfectly premixed case the emission level is low and combustion process is stable. The PPF also has an obvious effect on the combustor's emission and dynamic characteristics.