In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavel...In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.展开更多
Large amount of groundwater discharging from tunnel is likely to cause destruction of the ecological environment in the vicinity of the tunnel, thus an appropriate drainage criterion should be established to balance t...Large amount of groundwater discharging from tunnel is likely to cause destruction of the ecological environment in the vicinity of the tunnel, thus an appropriate drainage criterion should be established to balance the tunnel construction and groundwater.To assess the related problems, an limiting drainage standard ranging from 0.5 to 2.0 m3/(m·d) was suggested for mountain tunnels based on survey and comparative analysis. After that, for the purpose of verifying the rationality of the standard, a calculated formula for dewatering funnel volume caused by drainage was deduced on the basis of the groundwater dynamics and experience method.Furthermore, the equation about the relationship between water discharge and drawdown of groundwater table was presented. The permeability coefficient, specific yield and groundwater table value were introduced, and then combined with the above equation, the drawdown of groundwater table under the proposed limiting drainage criterion was calculated. It is shown that the proposed drainage standard can reach the purpose of protecting ecological environment under the following two conditions. One is the permeability coefficient ranges from 10-4 to 10-5 m/s and the specific yield ranges from 0.1 to 0.001. The other is the permeability coefficient varies from 10-6 to 10-8 m/s and the specific yield varies from 0.1 to 0.01. In addition, a majority of common geotechnical layers are involved in the above ranges. Thus, the proposed limiting drainage standard which ranges from 0.5 to 2.0 m3/(m·d) for mountain tunnel is reasonable.展开更多
In this paper, taking AM-50 Road Heaer as an example, the metheds of structural dynamic modification optimization for road headers are studied using experimental modal analysis and physical parameters analysis. The ma...In this paper, taking AM-50 Road Heaer as an example, the metheds of structural dynamic modification optimization for road headers are studied using experimental modal analysis and physical parameters analysis. The machine’s modal model and lumped mass model are established and the vibration response simulation is calculated for the two models with the load spectral measured. On the above basis, the dynamic parameters of the models are optimised and some useful results have been obtained.The research methods in this paper can be used for the reference to the other lager type mining machines.展开更多
基金Project(12072376)supported by the National Natural Science Foundation of ChinaPoject(10533220215858)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.
基金Projects(51078359,51208522,51208523)supported by the National Natural Science Foundation of ChinaProject(2010-122-009)supported by the Traffic Science and Technology Fund of Guizhou Province,ChinaProject(CX2011B098)supported by the Postgraduate Research Innovation Fund of Hunan Province,China
文摘Large amount of groundwater discharging from tunnel is likely to cause destruction of the ecological environment in the vicinity of the tunnel, thus an appropriate drainage criterion should be established to balance the tunnel construction and groundwater.To assess the related problems, an limiting drainage standard ranging from 0.5 to 2.0 m3/(m·d) was suggested for mountain tunnels based on survey and comparative analysis. After that, for the purpose of verifying the rationality of the standard, a calculated formula for dewatering funnel volume caused by drainage was deduced on the basis of the groundwater dynamics and experience method.Furthermore, the equation about the relationship between water discharge and drawdown of groundwater table was presented. The permeability coefficient, specific yield and groundwater table value were introduced, and then combined with the above equation, the drawdown of groundwater table under the proposed limiting drainage criterion was calculated. It is shown that the proposed drainage standard can reach the purpose of protecting ecological environment under the following two conditions. One is the permeability coefficient ranges from 10-4 to 10-5 m/s and the specific yield ranges from 0.1 to 0.001. The other is the permeability coefficient varies from 10-6 to 10-8 m/s and the specific yield varies from 0.1 to 0.01. In addition, a majority of common geotechnical layers are involved in the above ranges. Thus, the proposed limiting drainage standard which ranges from 0.5 to 2.0 m3/(m·d) for mountain tunnel is reasonable.
文摘In this paper, taking AM-50 Road Heaer as an example, the metheds of structural dynamic modification optimization for road headers are studied using experimental modal analysis and physical parameters analysis. The machine’s modal model and lumped mass model are established and the vibration response simulation is calculated for the two models with the load spectral measured. On the above basis, the dynamic parameters of the models are optimised and some useful results have been obtained.The research methods in this paper can be used for the reference to the other lager type mining machines.