In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ...In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.展开更多
Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TF...Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TFP. By estimating China's pollution treatment productivity between 2001 and 2008 and analyzing environmental regulation intensity and the effects of the relevant factors and pollution treatment productivity using panel data, this paper discovers that (1) pollution treatment productivity contributed a significant share of about 40% to industrial environmental TFP during the investigation period; (2) environmental regulation may not necessarily cause adverse impacts on pollution treatment efficiency and productivity but demonstrates a U-shaped relationship: when the share of pollution treatment cost in industrial value-added is above the range of 3.8%-5.1%, environmental regulation is likely to promote pollution treatment productivity and thus environmental TFP Judging by the estimation result, enhancing environmental protection and expediting the development of ecological civilization are conducive to China "s economic transition towards an intensive, efficient, circular, and sustainable development pattern. China's current industrial development has the capacity to tolerate a rather demanding level of pollution treatment and management and China needs to further rely on energy conservation and the environmental production industries to promote the progress of pollution treatment technologies.展开更多
In order to determine the slip plane of slope directly by the calculation results of strength reduction method, and analyze the influential factors of slope stability, a numerical model was established in plane strain...In order to determine the slip plane of slope directly by the calculation results of strength reduction method, and analyze the influential factors of slope stability, a numerical model was established in plane strain mode by FLAC3D for homogeneous soil slope, whose parameters were reduced until the slope reached the critical state. Then FISH program was used to get the location data of slip plane from displacement contour lines. Furthermore, the method to determine multiple slip planes was also proposed by setting different heights of elastic areas. The influential factors for the stability were analyzed, including cohesion, internal friction angle, and tensile strength. The calculation results show that with the increase of cohesion, failure mode of slope changes from shallow slipping to the deep slipping, while inclination of slip plane becomes slower and slipping volume becomes larger; with the increase of friction angle, failure mode of slope changes from deep slipping to shallow slipping, while slip plane becomes steeper and upper border of slip plane comes closer to the vertex of slope; the safety factor increases little and slip plane goes far away from vertex of slope with the increase of tensile strength.展开更多
An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-p...An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.展开更多
Advanced testing methods for the dynamics of mechanical microdevices are necessary to develop reliable, marketable microelectromechanical systems. A system for measuring the nanometer motions of microscopic structures...Advanced testing methods for the dynamics of mechanical microdevices are necessary to develop reliable, marketable microelectromechanical systems. A system for measuring the nanometer motions of microscopic structures has been demonstrated. Stop-action images of a target have been obtained with computer microvision, microscopic interferometry, and stroboscopic illuminator. It can be developed for measuring the in-plane-rigid-body motions, surface shapes, out-of-plane motions and deformations of microstructures. A new algorithm of sub-pixel step length correlation template matching is proposed to extract the in-plane displacement from vision images. Hariharan five-step phase-shift interferometry algorithm and unwrapping algorithms are adopted to measure the out-of-plane motions. It is demonstrated that the system can measure the motions of solder wetting in surface mount technology(SMT).展开更多
abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactor...abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactors under elevated temperature and elevated pressure. Meanwhile, gas-holdup and gas-liquid interfacial area a were obtained. The effects of temperature, pressure, superficial gas velocity and solid concentration on the mass transfer coeffi-cient were discussed. Experimental results show that the gas-liquid volumetric mass transfer coefficient kLa and interfacial area a increased with the increase of pressure, temperature, and superficial gas velocity, and decreased with the slurry concentration. The mass transfer coefficient kL increased with increasing superficial gas velocity and temperature and decreased with higher slurry concentration, while it changed slightly with pressure. Ac-cording to analysis of experimental data, an empirical correlation is obtained to calculate the values of kLa for H2 (CO, CO2) in the gas-paraffin-quartz system in a bubble column under elevated temperature and elevated pressure.展开更多
In this paper, the equilibrium surface tension and the dynamic surface tension of aqueous Triton X-100 solution at temperature 25 ℃ were measured by means of Wilhelmy plate method and maximal bubble pressure method r...In this paper, the equilibrium surface tension and the dynamic surface tension of aqueous Triton X-100 solution at temperature 25 ℃ were measured by means of Wilhelmy plate method and maximal bubble pressure method respectively. The determined critical micellar concentration(cmc) of Triton X-100 at 25 ℃ is (2.2×10-4) mol/dm3. The adsorption mechanics of Triton X-100 at air/solution was determined. For the submicellar concentrations it is diffusion-controlled. The diffusion coefficient was calculated from the experimental data in the range of short limit. In the range of long time adsorption, the subsurface concentration is fitted from the measured dynamic surface tensions.展开更多
基金Project(2012BAC09B02)supported by the 12th-Five Years Key Programs for Science and Technology Development of ChinaProject(2015zzts078)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.
文摘Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TFP. By estimating China's pollution treatment productivity between 2001 and 2008 and analyzing environmental regulation intensity and the effects of the relevant factors and pollution treatment productivity using panel data, this paper discovers that (1) pollution treatment productivity contributed a significant share of about 40% to industrial environmental TFP during the investigation period; (2) environmental regulation may not necessarily cause adverse impacts on pollution treatment efficiency and productivity but demonstrates a U-shaped relationship: when the share of pollution treatment cost in industrial value-added is above the range of 3.8%-5.1%, environmental regulation is likely to promote pollution treatment productivity and thus environmental TFP Judging by the estimation result, enhancing environmental protection and expediting the development of ecological civilization are conducive to China "s economic transition towards an intensive, efficient, circular, and sustainable development pattern. China's current industrial development has the capacity to tolerate a rather demanding level of pollution treatment and management and China needs to further rely on energy conservation and the environmental production industries to promote the progress of pollution treatment technologies.
基金Project(20060533071) supported by the Doctoral Program Foundation of Higher Education of ChinaProject (20060400264) supported by China Postdoctoral Science Foundation+1 种基金Project (50774093) supported by the National Natural Science Foundation of ChinaProject (1343-74236000014) supported by Graduate Student Innovation Foundation of Hunan Province, China
文摘In order to determine the slip plane of slope directly by the calculation results of strength reduction method, and analyze the influential factors of slope stability, a numerical model was established in plane strain mode by FLAC3D for homogeneous soil slope, whose parameters were reduced until the slope reached the critical state. Then FISH program was used to get the location data of slip plane from displacement contour lines. Furthermore, the method to determine multiple slip planes was also proposed by setting different heights of elastic areas. The influential factors for the stability were analyzed, including cohesion, internal friction angle, and tensile strength. The calculation results show that with the increase of cohesion, failure mode of slope changes from shallow slipping to the deep slipping, while inclination of slip plane becomes slower and slipping volume becomes larger; with the increase of friction angle, failure mode of slope changes from deep slipping to shallow slipping, while slip plane becomes steeper and upper border of slip plane comes closer to the vertex of slope; the safety factor increases little and slip plane goes far away from vertex of slope with the increase of tensile strength.
基金Project(8151027501000008) supported by Guangdong Natural Science Foundation, ChinaProject(2007490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, ChinaProject (2006K0006) supported by the Open Foundation of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China
文摘An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.
文摘Advanced testing methods for the dynamics of mechanical microdevices are necessary to develop reliable, marketable microelectromechanical systems. A system for measuring the nanometer motions of microscopic structures has been demonstrated. Stop-action images of a target have been obtained with computer microvision, microscopic interferometry, and stroboscopic illuminator. It can be developed for measuring the in-plane-rigid-body motions, surface shapes, out-of-plane motions and deformations of microstructures. A new algorithm of sub-pixel step length correlation template matching is proposed to extract the in-plane displacement from vision images. Hariharan five-step phase-shift interferometry algorithm and unwrapping algorithms are adopted to measure the out-of-plane motions. It is demonstrated that the system can measure the motions of solder wetting in surface mount technology(SMT).
基金Supported by the National Natural Science Foundation of China(20776018)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20130325)
文摘abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactors under elevated temperature and elevated pressure. Meanwhile, gas-holdup and gas-liquid interfacial area a were obtained. The effects of temperature, pressure, superficial gas velocity and solid concentration on the mass transfer coeffi-cient were discussed. Experimental results show that the gas-liquid volumetric mass transfer coefficient kLa and interfacial area a increased with the increase of pressure, temperature, and superficial gas velocity, and decreased with the slurry concentration. The mass transfer coefficient kL increased with increasing superficial gas velocity and temperature and decreased with higher slurry concentration, while it changed slightly with pressure. Ac-cording to analysis of experimental data, an empirical correlation is obtained to calculate the values of kLa for H2 (CO, CO2) in the gas-paraffin-quartz system in a bubble column under elevated temperature and elevated pressure.
文摘In this paper, the equilibrium surface tension and the dynamic surface tension of aqueous Triton X-100 solution at temperature 25 ℃ were measured by means of Wilhelmy plate method and maximal bubble pressure method respectively. The determined critical micellar concentration(cmc) of Triton X-100 at 25 ℃ is (2.2×10-4) mol/dm3. The adsorption mechanics of Triton X-100 at air/solution was determined. For the submicellar concentrations it is diffusion-controlled. The diffusion coefficient was calculated from the experimental data in the range of short limit. In the range of long time adsorption, the subsurface concentration is fitted from the measured dynamic surface tensions.