In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis si...In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis simulation program (WASP) with the environmental fluiddynamics code (EFDC). The model was then calibrated and verified. Four scenarios (S1, S21, S22 andS23) were simulated using the model. Results show that the water quality of the Miyun Reservoirunder conditions of low surface water level is apparently affected by different amounts of inflowand different total phosphorus (TP) loadings. The chlorophyll-a concentration might exceed 10 μg/Lin many areas of the Miyun Reservoir (This limitative value is seen as a critical value ofeutrophication) when large loadings of TP enter due to the amount of inflow increasing. Results ofscenario S23 indicate that control of TP loadings can decrease chlorophyll-a concentrationeffectively, and the water quality of the Miyun Reservoir will improve or retain its status quo.展开更多
This paper makes a brief analysis of the scenes and implication of the famous Ancient Chinese poem River snow. It makes a comparison and contrast of the five typical English versions from the perspective of the transl...This paper makes a brief analysis of the scenes and implication of the famous Ancient Chinese poem River snow. It makes a comparison and contrast of the five typical English versions from the perspective of the translation of its static and dynamic states. The paper also discusses the meaning of “du diao han jiang xue”, and how to better translate the key word “diao”.展开更多
Over the last decades and centuries,European mountain landscapes have experienced substantial transformations.Natural and anthropogenic LULC changes(land use and land cover changes), especially agro-pastoral activitie...Over the last decades and centuries,European mountain landscapes have experienced substantial transformations.Natural and anthropogenic LULC changes(land use and land cover changes), especially agro-pastoral activities,have directly influenced the spatial organization and composition of European mountain landscapes.For the past sixty years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population.Stakeholders, to better anticipate future changes,need spatially and temporally explicit models to identify areas at risk of land change and possible abandonment.This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains,based on historical LULC trends and a range of future socio-economic drivers.The proposed methodologyconsiders local specificities of the Pyrenean valleys,sub-regional climate and topographical properties,and regional economic policies.Results indicate that some regions are projected to face strong abandonment, regardless of the scenario conditions.Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive(agricultural and/or pastoral) production and profitability.The combination of the results for the four scenarios allows assessments of where encroachment(e.g.colonization by shrublands) and reforestation are the most probable.This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions.展开更多
Under the conditions of climate warming,grassland degradation,frequent sandstorms,and fast increases in livestock numbers,coordinating animal husbandry and ecological protection is an important issue facing Mongolia.U...Under the conditions of climate warming,grassland degradation,frequent sandstorms,and fast increases in livestock numbers,coordinating animal husbandry and ecological protection is an important issue facing Mongolia.Using Khutag-Undur as an example,this study explores the dynamic process,future scenarios,and optimization strategies of the animal husbandry system in a typical Soum of Mongolia from 2015 to 2050 under three future climate socioeconomic scenarios of CMIP 6:SSP1-RCP2.6,SSP2-RCP4.5,and SSP5-RCP8.5.First,the animal husbandry system was deconstructed into three subsystems:grassland primary production,livestock secondary production,and herder consumption.Based on the negative feedback mechanism of forage-livestock balance,a system dynamics model for the Khutag-Undur Soum animal husbandry system was developed.This model integrates spatial data such as land cover and NPP,as well as statistical data on livestock,herder income and expenditures,sample plot surveys,and herder questionnaires.The model was used to simulate the historical changes(2015-2022)in forage production and carrying capacity,livestock stock,and livestock output of Khutag-Undur,and then to forecast the future scenarios of those variables for 2022-2050.Second,the most suitable future scenario for the Soum was identified by comparing the three future scenarios using a pastural system sustainability evaluation method.Finally,based on three indicators of livestock numbers,a two-step livestock reduction strategy was proposed.The main conclusions are that the rapid growth of livestock numbers in Khutag-Undur places considerable pressure on the grassland,and the SSP1-RCP2.6 scenario is the most suitable future scenario for the Soum.However,even in this suitable scenario,grassland overloading remains evident.The continuous implementation of a livestock reduction strategy is recommended to maintain the sustainable development of animal husbandry and grassland conservation.展开更多
文摘In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis simulation program (WASP) with the environmental fluiddynamics code (EFDC). The model was then calibrated and verified. Four scenarios (S1, S21, S22 andS23) were simulated using the model. Results show that the water quality of the Miyun Reservoirunder conditions of low surface water level is apparently affected by different amounts of inflowand different total phosphorus (TP) loadings. The chlorophyll-a concentration might exceed 10 μg/Lin many areas of the Miyun Reservoir (This limitative value is seen as a critical value ofeutrophication) when large loadings of TP enter due to the amount of inflow increasing. Results ofscenario S23 indicate that control of TP loadings can decrease chlorophyll-a concentrationeffectively, and the water quality of the Miyun Reservoir will improve or retain its status quo.
文摘This paper makes a brief analysis of the scenes and implication of the famous Ancient Chinese poem River snow. It makes a comparison and contrast of the five typical English versions from the perspective of the translation of its static and dynamic states. The paper also discusses the meaning of “du diao han jiang xue”, and how to better translate the key word “diao”.
基金supported by the MODE RESPYR project(ANR 2010 JCJC 1804-01)founded by the French National Science Agency(ANR)
文摘Over the last decades and centuries,European mountain landscapes have experienced substantial transformations.Natural and anthropogenic LULC changes(land use and land cover changes), especially agro-pastoral activities,have directly influenced the spatial organization and composition of European mountain landscapes.For the past sixty years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population.Stakeholders, to better anticipate future changes,need spatially and temporally explicit models to identify areas at risk of land change and possible abandonment.This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains,based on historical LULC trends and a range of future socio-economic drivers.The proposed methodologyconsiders local specificities of the Pyrenean valleys,sub-regional climate and topographical properties,and regional economic policies.Results indicate that some regions are projected to face strong abandonment, regardless of the scenario conditions.Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive(agricultural and/or pastoral) production and profitability.The combination of the results for the four scenarios allows assessments of where encroachment(e.g.colonization by shrublands) and reforestation are the most probable.This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions.
基金The National Key R&D Program of China(2022YFE0119200)The National Natural Science Foundation of China(32161143025,42371283)The Second Tibetan Plateau Scientific Expedition and Research Program(STEP),China(2019QZKK0603)。
文摘Under the conditions of climate warming,grassland degradation,frequent sandstorms,and fast increases in livestock numbers,coordinating animal husbandry and ecological protection is an important issue facing Mongolia.Using Khutag-Undur as an example,this study explores the dynamic process,future scenarios,and optimization strategies of the animal husbandry system in a typical Soum of Mongolia from 2015 to 2050 under three future climate socioeconomic scenarios of CMIP 6:SSP1-RCP2.6,SSP2-RCP4.5,and SSP5-RCP8.5.First,the animal husbandry system was deconstructed into three subsystems:grassland primary production,livestock secondary production,and herder consumption.Based on the negative feedback mechanism of forage-livestock balance,a system dynamics model for the Khutag-Undur Soum animal husbandry system was developed.This model integrates spatial data such as land cover and NPP,as well as statistical data on livestock,herder income and expenditures,sample plot surveys,and herder questionnaires.The model was used to simulate the historical changes(2015-2022)in forage production and carrying capacity,livestock stock,and livestock output of Khutag-Undur,and then to forecast the future scenarios of those variables for 2022-2050.Second,the most suitable future scenario for the Soum was identified by comparing the three future scenarios using a pastural system sustainability evaluation method.Finally,based on three indicators of livestock numbers,a two-step livestock reduction strategy was proposed.The main conclusions are that the rapid growth of livestock numbers in Khutag-Undur places considerable pressure on the grassland,and the SSP1-RCP2.6 scenario is the most suitable future scenario for the Soum.However,even in this suitable scenario,grassland overloading remains evident.The continuous implementation of a livestock reduction strategy is recommended to maintain the sustainable development of animal husbandry and grassland conservation.