Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma (HCC). In man, the pathobiological changes associated with HCV infection have been attributed to both the i...Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma (HCC). In man, the pathobiological changes associated with HCV infection have been attributed to both the immune system and direct viral cytopathic effects. Until now, the lack of simple culture systems to infect and propagate the virus has hampered progress in understanding the viral life cycle and pathogenesis of HCV infection, including the molecular mechanisms implicated in HCV-induced HCC. This clearly demonstrates the need to develop small animal models for the study of HCV-associated pathogenesis. This review describes and discusses the development of new HCV animal models to study viral infection and investigate the direct effects of viral protein expression on liver disease.展开更多
The emergence of antibiotic resistance in bacteria is a major public-health issue.Synthesis of efficient antibiotic-free material is very important for fighting bacterial infection-related diseases.Herein,red-carbon d...The emergence of antibiotic resistance in bacteria is a major public-health issue.Synthesis of efficient antibiotic-free material is very important for fighting bacterial infection-related diseases.Herein,red-carbon dots(R-CDs)with a broad range of spectral absorption(350–700 nm)from organic bactericides or intermediates were synthesized through a solvothermal route.The prepared R-CDs not only had intrinsic antibacterial activities,but also could kill multidrug-resistant bacteria(multidrug-resistant Acinetobacter baumannii(MRAB)and multidrug-resistant Staphylococcus aureus(MRSA))effectively by generating reactive oxygen species.Furthermore,R-CDs could eliminate and inhibit the formation of MRAB biofilms,while conferring few side effects on normal cells.A unique property of R-CDs was demonstrated upon in vivo treatment of antibiotic-sensitive MRABinduced infected wounds.These data suggested that this novel R-CDs-based strategy might enable the design of nextgeneration agents to fight drug-resistant bacteria.展开更多
文摘Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma (HCC). In man, the pathobiological changes associated with HCV infection have been attributed to both the immune system and direct viral cytopathic effects. Until now, the lack of simple culture systems to infect and propagate the virus has hampered progress in understanding the viral life cycle and pathogenesis of HCV infection, including the molecular mechanisms implicated in HCV-induced HCC. This clearly demonstrates the need to develop small animal models for the study of HCV-associated pathogenesis. This review describes and discusses the development of new HCV animal models to study viral infection and investigate the direct effects of viral protein expression on liver disease.
基金supported by the National Natural Science Foundation of China(NSFC,21925802,21878039,21808028,22022803 and 22078046)the NSFC-Liaoning United Fund(U1908202)the National Key Research and Development Plan(2018AAA0100301)。
文摘The emergence of antibiotic resistance in bacteria is a major public-health issue.Synthesis of efficient antibiotic-free material is very important for fighting bacterial infection-related diseases.Herein,red-carbon dots(R-CDs)with a broad range of spectral absorption(350–700 nm)from organic bactericides or intermediates were synthesized through a solvothermal route.The prepared R-CDs not only had intrinsic antibacterial activities,but also could kill multidrug-resistant bacteria(multidrug-resistant Acinetobacter baumannii(MRAB)and multidrug-resistant Staphylococcus aureus(MRSA))effectively by generating reactive oxygen species.Furthermore,R-CDs could eliminate and inhibit the formation of MRAB biofilms,while conferring few side effects on normal cells.A unique property of R-CDs was demonstrated upon in vivo treatment of antibiotic-sensitive MRABinduced infected wounds.These data suggested that this novel R-CDs-based strategy might enable the design of nextgeneration agents to fight drug-resistant bacteria.