To realize automatic modeling and dynamic simulation of the educational assembling-type robot with open structure, a general dynamic model for the educational assembling-type robot and a fast simulation algorithm are ...To realize automatic modeling and dynamic simulation of the educational assembling-type robot with open structure, a general dynamic model for the educational assembling-type robot and a fast simulation algorithm are put forward. First, the educational robot system is abstracted to a multibody system and a general dynamic model of the educational robot is constructed by the Newton-Euler method. Then the dynamic model is simplified by a combination of components with fixed connections according to the structural characteristics of the educational robot. Secondly, in order to obtain a high efficiency simulation algorithm, based on the sparse matrix technique, the augmentation algorithm and the direct projective constraint stabilization algorithm are improved. Finally, a numerical example is given. The results show that the model and the fast algorithm are valid and effective. This study lays a dynamic foundation for realizing the simulation platform of the educational robot.展开更多
基金Hexa-Type Elites Peak Program of Jiangsu Province(No.2008144)Qing Lan Project of Jiangsu ProvinceFund for Excellent Young Teachers of Southeast University
文摘To realize automatic modeling and dynamic simulation of the educational assembling-type robot with open structure, a general dynamic model for the educational assembling-type robot and a fast simulation algorithm are put forward. First, the educational robot system is abstracted to a multibody system and a general dynamic model of the educational robot is constructed by the Newton-Euler method. Then the dynamic model is simplified by a combination of components with fixed connections according to the structural characteristics of the educational robot. Secondly, in order to obtain a high efficiency simulation algorithm, based on the sparse matrix technique, the augmentation algorithm and the direct projective constraint stabilization algorithm are improved. Finally, a numerical example is given. The results show that the model and the fast algorithm are valid and effective. This study lays a dynamic foundation for realizing the simulation platform of the educational robot.