During the process of cross wedge rolling of aluminum alloy hollow shaft, the evolution of its microstructure has an important influence on the mechanical properties of the rolled piece. In order to obtain the microst...During the process of cross wedge rolling of aluminum alloy hollow shaft, the evolution of its microstructure has an important influence on the mechanical properties of the rolled piece. In order to obtain the microstructure evolution law of aluminum alloy hollow shaft in cross wedge rolling without mandrel, a finite element model is constructed through the finite element software Deform-3D. The influences of rolling temperature, sectional shrinkage,spreading angle and forming angle on the average grain size of rolled piece are studied by numerical simulation of microstructure evolution. The cellular automata method reveals the inherent relationship between the process parameters and the evolution of the microstructure, and provides a reference for optimizing the rolling process parameters of aluminum alloy hollow shafts and improving the forming quality. The results show that the average grain size of the rolled piece increases with the increase of the rolling temperature, decreases with the increase of the sectional shrinkage,and decreases first and then increases with the increase of the spreading angle, and changes little with the increase of the forming angle.展开更多
The enhanced reduction mechanism and kinetics of different Na_(2)CO_(3) additions in the carbothermic reduction of ilmenite concentrate were investigated.The reduction process was carried out at different heating rate...The enhanced reduction mechanism and kinetics of different Na_(2)CO_(3) additions in the carbothermic reduction of ilmenite concentrate were investigated.The reduction process was carried out at different heating rates in a thermogravimetry facility,and the kinetics was studied using the Starink method.The results indicate that Na_(2)CO_(3) addition enhanced the reduction effect as well as reduced the initial temperature of the reaction and the activation energy by increasing reactant activity in reactant form;however,it deteriorated the late-stage kinetic conditions by generating a molten phase,thereby reducing the reaction rate in the late stages of reduction.The average apparent activation energies of ilmenite concentrate with 0%,3%,and 6%Na_(2)CO_(3) are 447,289,and 430 kJ/mol,respectively.The results from kinetics parameters confirm that Na_(2)CO_(3) addition accelerated the reduction kinetics;however,excessive addition worsened the reduction kinetics.展开更多
This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model error...This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model errors of the static forces and friction forces of pneumatic muscles, simplified average flow rate characteristics of valves, unknown disturbances of entire system, and unmeasured pressures, there exist rather severe parametric uncertainties, nonlinear uncertainties and dynamic uncertainties in modeling of the parallel manipulator. A nonlinear pressure observer is constructed to estimate unknown pressures on the basis of a single-input-single-output (SISO) decoupling model that is simplified from the actual multiple-input-multiple-output (MIMO) coupling model of the parallel manipulator. Then, an adaptive robust controller integrated with the pressure observer is developed to accomplish high precision posture trajectory tracking of the parallel manipulator. The experimental results indicate that the system with the proposed POARC not only achieves good control accuracy and smooth movement but also maintains robustness to disturbances.展开更多
In the complex mechanical vibration environment, the dominant frequency of the system varies remarkably and swiftly under various running conditions, which also characterizes uncertainty and time-variation. It is very...In the complex mechanical vibration environment, the dominant frequency of the system varies remarkably and swiftly under various running conditions, which also characterizes uncertainty and time-variation. It is very impending and important to suppress or isolate the detrimental vibrations related to the above memtoned system with active vibration control (AVC) technology. This paper presented the improved linear quadratic gaussian (LQG) control scheme with a specified filter to realize broadband disturbance/noise attenuation and assure intensive suppression of vibration at the key vibration frequency, then applies and modifies the multiple model switching tuning (MMST) control method by disturbance observation to track the variation of dominant vibration component timely. The effectiveness and superiority of the presented control method were demonstrated by numerical simulation and AVC experiment on a flexible cantilever beam under sweeping excitation.展开更多
Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of th...Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system. To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system’s nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.展开更多
Understanding the relationships between topographic indices and crop yield variability is important for soil manage- ment and crop production in rolling landscape. Two agricultural fields at Alvena and Hepburn, Saskat...Understanding the relationships between topographic indices and crop yield variability is important for soil manage- ment and crop production in rolling landscape. Two agricultural fields at Alvena and Hepburn, Saskatchewan, Canada were selected to examine how topographic indices were related to wheat yield under two topographic and weather conditions in the Canadian prairies. The landscapes of the two sites are classified as hummocky and the dominant soil type is an Aridic Ustoll. The relationships among yield, topography, soil, and weather were analyzed using wheat (Triticum aestivum L.) grain yield from Alvena in 2001 (dry year) and 2004 (wet year) and from Hepburn in 1998 (dry year). Topographic/soil indices included relative elevation, wetness index, upslope length, curvature, soil organic matter, and soil moisture storage before seeding. The results indicated that, in the dry years, the correlation coefficients between upslope length and grain yield were 0.79 for the typical rolling landscape (Alvena) in 2001 and 0.73 for shallow gentle rolling landscape (Hepburn) in 1998. In the wet year (2004), the relationships between yield and topographic/soil attributes were not as strong as in dry years. Therefore, upslope length was the best yield indicator for the two landscapes in dry years, whereas no topographic indices were highly correlated to crop yield in wet years. Those topographic indices seemed useful in identifying the yield variability and delineating the proper management zone.展开更多
3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental...3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.展开更多
The relationship between the strain rate field observed by GPS and global distribution of strong earthquakes is analyzed in this work. How do we recognize the characteristics of global seismic activities with space ob...The relationship between the strain rate field observed by GPS and global distribution of strong earthquakes is analyzed in this work. How do we recognize the characteristics of global seismic activities with space observation technology? A preliminary model of Cellular Automata that could simulate the global seismic activities both in time and space has been established based on the results of global strain rate field provided by the GSRM Program. The grid of the model is evenly divided,which is consistent with that of GSRM.The status of each cell is its strain state,and is adjusted according to the evolution rules.Maximum shear strain criterion is adopted in the evolution of the Cellular Automata. The threshold for cells in surface expansion is 80% of that for those in compression. The preliminary model could in general simulate the main characteristics of the distribution of the global seismic activities. It could exhibit in general the global distribution of weak and active tectonic activities. Although the preliminary Cellular Automata model needs to be improved in many aspects,the result suggests the possibility of modeling the general features of rather complicated global seismic activities based on the strain rates obtained by GPS and other observations.展开更多
To investigate drivers' lane-changing behavior under different information feedback strategies,a microscopic traffic simulation based on the cellular automaton model was made on the typical freeway with a regular ...To investigate drivers' lane-changing behavior under different information feedback strategies,a microscopic traffic simulation based on the cellular automaton model was made on the typical freeway with a regular lane and a high-occupancy one. A new dynamic tolling scheme in terms of the real-time traffic condition on the high-occupancy lane was further designed to enhance the whole freeway's flow throughput. The results show that the mean velocity feedback strategy is generally more efficient than the travel time feedback strategy in correctly guiding drivers' lane choice behavior. Specifically,the toll level,lane-changing rate and freeway's throughput and congestion coefficient induced by the travel time feedback strategy oscillate with larger amplitude and longer period. In addition,the dynamic tolling scheme can make the high-occupancy lane less congested and maximize the freeway's throughput when the regular-lane inflow rate is larger than 0.45.展开更多
This research aims at developing RCPS (revised creative problem solving) teaching model, besides the authors designed the instructions of chemical reaction to promote eight grade students' scientific learning motiv...This research aims at developing RCPS (revised creative problem solving) teaching model, besides the authors designed the instructions of chemical reaction to promote eight grade students' scientific learning motivation and scientific concept learning. We adopted quasi-experiment study, the experimental group and controlled group all 28 students were chose, go on the parameter is analyzed together compared with textbook instructions, scale of scientific learning motivation and test of scientific conception learning were used for the two groups in prior test and post test, then they used statistical ANCOVA (analysis of covariance) to analyze the differences between the two teaching models. The result of this study finds that RCPS teaching model improved student's scientific learning motivation and learning scientific concept was superior to textbook instructions in controlled group, p = 0.001 (〈 0.01), and all with high experimental treatment effects (〉 0.14). The study also proposes that when RCPS teaching model was applied to scientific concept teaching, RCPS teaching model should be joined the conception introducing stage, and pay attention to students' scientific learning motivation.展开更多
Educators and teachers generally agree that a major variable affecting students learning L2 or FL is motivation. This paper discusses the correlation between increasing the sense of achievement and sustaining students...Educators and teachers generally agree that a major variable affecting students learning L2 or FL is motivation. This paper discusses the correlation between increasing the sense of achievement and sustaining students' motivations in a Chinese cultural setting, in which language learning should not be understood in terms of North American and Western cultural values. Considering EFL or ElL situations at a tertiary education level in China's Mainland, the author thinks that for university students, we should consider this issue in another way and concludes that, from the adults' psychological perspective, the sense of achievement, more than any other factor, plays the most important role in sustaining students' motivations, thus contributing greatly to the whole process of learning. Therefore, it should be viewed as a very useful and effective method to maintain students' motivations. Based on this idea, the author strongly suggests that while they are capitalizing on some effective methods or strategies to foster and maintain their students' motivations, EFL or ElL teachers should try every means and utilize any occasion to ensure that students can feel their achievement and see progress during the advanced level of learning, thus guaranteeing they will keep expending energy and effort in continued learning.展开更多
We investigate the generalized Kuhn's model, namely, a chain of nonlinear chaotic oscillators describing a nonlinear gyrotropic medium. It is shown that despite the chaotic behavior of separate oscillators the chain ...We investigate the generalized Kuhn's model, namely, a chain of nonlinear chaotic oscillators describing a nonlinear gyrotropic medium. It is shown that despite the chaotic behavior of separate oscillators the chain preserves some coherency as a whole. The relation between the chain synchronization and the physical properties of a random mean field is established.展开更多
基金Project(52075272) supported by the National Natural Science Foundation of ChinaProject(LY18E050006) supported by the Natural Science Foundation of Zhejiang Province,China+1 种基金Project(2017A610088) supported by the Natural Science Foundation of Ningbo City,ChinaProjects(2018B10004, 2019B10100) supported by the Ningbo Science and Technology Plan,China。
文摘During the process of cross wedge rolling of aluminum alloy hollow shaft, the evolution of its microstructure has an important influence on the mechanical properties of the rolled piece. In order to obtain the microstructure evolution law of aluminum alloy hollow shaft in cross wedge rolling without mandrel, a finite element model is constructed through the finite element software Deform-3D. The influences of rolling temperature, sectional shrinkage,spreading angle and forming angle on the average grain size of rolled piece are studied by numerical simulation of microstructure evolution. The cellular automata method reveals the inherent relationship between the process parameters and the evolution of the microstructure, and provides a reference for optimizing the rolling process parameters of aluminum alloy hollow shafts and improving the forming quality. The results show that the average grain size of the rolled piece increases with the increase of the rolling temperature, decreases with the increase of the sectional shrinkage,and decreases first and then increases with the increase of the spreading angle, and changes little with the increase of the forming angle.
基金supported by the National Natural Science Foundation of China (No. U1902217)。
文摘The enhanced reduction mechanism and kinetics of different Na_(2)CO_(3) additions in the carbothermic reduction of ilmenite concentrate were investigated.The reduction process was carried out at different heating rates in a thermogravimetry facility,and the kinetics was studied using the Starink method.The results indicate that Na_(2)CO_(3) addition enhanced the reduction effect as well as reduced the initial temperature of the reaction and the activation energy by increasing reactant activity in reactant form;however,it deteriorated the late-stage kinetic conditions by generating a molten phase,thereby reducing the reaction rate in the late stages of reduction.The average apparent activation energies of ilmenite concentrate with 0%,3%,and 6%Na_(2)CO_(3) are 447,289,and 430 kJ/mol,respectively.The results from kinetics parameters confirm that Na_(2)CO_(3) addition accelerated the reduction kinetics;however,excessive addition worsened the reduction kinetics.
基金Project (No.50775200) supported by the National Natural Science Foundation of China
文摘This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model errors of the static forces and friction forces of pneumatic muscles, simplified average flow rate characteristics of valves, unknown disturbances of entire system, and unmeasured pressures, there exist rather severe parametric uncertainties, nonlinear uncertainties and dynamic uncertainties in modeling of the parallel manipulator. A nonlinear pressure observer is constructed to estimate unknown pressures on the basis of a single-input-single-output (SISO) decoupling model that is simplified from the actual multiple-input-multiple-output (MIMO) coupling model of the parallel manipulator. Then, an adaptive robust controller integrated with the pressure observer is developed to accomplish high precision posture trajectory tracking of the parallel manipulator. The experimental results indicate that the system with the proposed POARC not only achieves good control accuracy and smooth movement but also maintains robustness to disturbances.
文摘In the complex mechanical vibration environment, the dominant frequency of the system varies remarkably and swiftly under various running conditions, which also characterizes uncertainty and time-variation. It is very impending and important to suppress or isolate the detrimental vibrations related to the above memtoned system with active vibration control (AVC) technology. This paper presented the improved linear quadratic gaussian (LQG) control scheme with a specified filter to realize broadband disturbance/noise attenuation and assure intensive suppression of vibration at the key vibration frequency, then applies and modifies the multiple model switching tuning (MMST) control method by disturbance observation to track the variation of dominant vibration component timely. The effectiveness and superiority of the presented control method were demonstrated by numerical simulation and AVC experiment on a flexible cantilever beam under sweeping excitation.
基金Project supported by the Natural Science Foundation of Zhejiang Province (No. Y104414) and the Science and Technology Plan of Zhejiang Province (No. 2005C21084), China
文摘Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system. To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system’s nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.
基金Project supported by the National Science and Engineering Research Council (NSERC) of Canada.
文摘Understanding the relationships between topographic indices and crop yield variability is important for soil manage- ment and crop production in rolling landscape. Two agricultural fields at Alvena and Hepburn, Saskatchewan, Canada were selected to examine how topographic indices were related to wheat yield under two topographic and weather conditions in the Canadian prairies. The landscapes of the two sites are classified as hummocky and the dominant soil type is an Aridic Ustoll. The relationships among yield, topography, soil, and weather were analyzed using wheat (Triticum aestivum L.) grain yield from Alvena in 2001 (dry year) and 2004 (wet year) and from Hepburn in 1998 (dry year). Topographic/soil indices included relative elevation, wetness index, upslope length, curvature, soil organic matter, and soil moisture storage before seeding. The results indicated that, in the dry years, the correlation coefficients between upslope length and grain yield were 0.79 for the typical rolling landscape (Alvena) in 2001 and 0.73 for shallow gentle rolling landscape (Hepburn) in 1998. In the wet year (2004), the relationships between yield and topographic/soil attributes were not as strong as in dry years. Therefore, upslope length was the best yield indicator for the two landscapes in dry years, whereas no topographic indices were highly correlated to crop yield in wet years. Those topographic indices seemed useful in identifying the yield variability and delineating the proper management zone.
基金Project(2012AA03A505)supported by the High-Tech Research and Development Program of ChinaProject(51474023)supported by the National Natural Science Foundation of China
文摘3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.
基金sponsored by the National Key Techonology R&D Program(2012BAK19B01)the National Natural Foundation of China(41274098)
文摘The relationship between the strain rate field observed by GPS and global distribution of strong earthquakes is analyzed in this work. How do we recognize the characteristics of global seismic activities with space observation technology? A preliminary model of Cellular Automata that could simulate the global seismic activities both in time and space has been established based on the results of global strain rate field provided by the GSRM Program. The grid of the model is evenly divided,which is consistent with that of GSRM.The status of each cell is its strain state,and is adjusted according to the evolution rules.Maximum shear strain criterion is adopted in the evolution of the Cellular Automata. The threshold for cells in surface expansion is 80% of that for those in compression. The preliminary model could in general simulate the main characteristics of the distribution of the global seismic activities. It could exhibit in general the global distribution of weak and active tectonic activities. Although the preliminary Cellular Automata model needs to be improved in many aspects,the result suggests the possibility of modeling the general features of rather complicated global seismic activities based on the strain rates obtained by GPS and other observations.
基金Project(70521001) supported by the National Natural Science Foundation of ChinaProject(2006CB705503) supported by the National Basic Research Program of ChinaProject supported by the Innovation Foundation of BUAA for PhD Graduates
文摘To investigate drivers' lane-changing behavior under different information feedback strategies,a microscopic traffic simulation based on the cellular automaton model was made on the typical freeway with a regular lane and a high-occupancy one. A new dynamic tolling scheme in terms of the real-time traffic condition on the high-occupancy lane was further designed to enhance the whole freeway's flow throughput. The results show that the mean velocity feedback strategy is generally more efficient than the travel time feedback strategy in correctly guiding drivers' lane choice behavior. Specifically,the toll level,lane-changing rate and freeway's throughput and congestion coefficient induced by the travel time feedback strategy oscillate with larger amplitude and longer period. In addition,the dynamic tolling scheme can make the high-occupancy lane less congested and maximize the freeway's throughput when the regular-lane inflow rate is larger than 0.45.
文摘This research aims at developing RCPS (revised creative problem solving) teaching model, besides the authors designed the instructions of chemical reaction to promote eight grade students' scientific learning motivation and scientific concept learning. We adopted quasi-experiment study, the experimental group and controlled group all 28 students were chose, go on the parameter is analyzed together compared with textbook instructions, scale of scientific learning motivation and test of scientific conception learning were used for the two groups in prior test and post test, then they used statistical ANCOVA (analysis of covariance) to analyze the differences between the two teaching models. The result of this study finds that RCPS teaching model improved student's scientific learning motivation and learning scientific concept was superior to textbook instructions in controlled group, p = 0.001 (〈 0.01), and all with high experimental treatment effects (〉 0.14). The study also proposes that when RCPS teaching model was applied to scientific concept teaching, RCPS teaching model should be joined the conception introducing stage, and pay attention to students' scientific learning motivation.
文摘Educators and teachers generally agree that a major variable affecting students learning L2 or FL is motivation. This paper discusses the correlation between increasing the sense of achievement and sustaining students' motivations in a Chinese cultural setting, in which language learning should not be understood in terms of North American and Western cultural values. Considering EFL or ElL situations at a tertiary education level in China's Mainland, the author thinks that for university students, we should consider this issue in another way and concludes that, from the adults' psychological perspective, the sense of achievement, more than any other factor, plays the most important role in sustaining students' motivations, thus contributing greatly to the whole process of learning. Therefore, it should be viewed as a very useful and effective method to maintain students' motivations. Based on this idea, the author strongly suggests that while they are capitalizing on some effective methods or strategies to foster and maintain their students' motivations, EFL or ElL teachers should try every means and utilize any occasion to ensure that students can feel their achievement and see progress during the advanced level of learning, thus guaranteeing they will keep expending energy and effort in continued learning.
基金the georgian national Foundation(grants:GNSF/STO7/4-197,GNSF/STO 7/4-179)
文摘We investigate the generalized Kuhn's model, namely, a chain of nonlinear chaotic oscillators describing a nonlinear gyrotropic medium. It is shown that despite the chaotic behavior of separate oscillators the chain preserves some coherency as a whole. The relation between the chain synchronization and the physical properties of a random mean field is established.