Cellular Automata(CA) is widely used for the simulation of land use changes. This study applied a vector-based CA model to simulate land use change in order to minimize or eliminate the scale sensitivity in traditiona...Cellular Automata(CA) is widely used for the simulation of land use changes. This study applied a vector-based CA model to simulate land use change in order to minimize or eliminate the scale sensitivity in traditional raster-based CA model. The cells of vector-based CA model are presented according to the shapes and attributes of geographic entities, and the transition rules of vector-based CA model are improved by taking spatial variables of the study area into consideration. The vector-based CA model is applied to simulate land use changes in downtown of Qidong City, Jiangsu Province, China and its validation is confirmed by the methods of visual assessment and spatial accuracy. The simulation result of vector-based CA model reveals that nearly 75% of newly increased urban cells are located in the northwest and southwest parts of the study area from 2002 to 2007, which is in consistent with real land use map. In addition, the simulation results of the vector-based and raster-based CA models are compared to real land use data and their spatial accuracies are found to be 84.0% and 81.9%, respectively. In conclusion, results from this study indicate that the vector-based CA model is a practical and applicable method for the simulation of urbanization processes.展开更多
Expert system plays an important role in port machine diagnosis, which aims at automatic equipment test for higher availability and efficiency of port operations. In this study, a port machine diagnosis expert system ...Expert system plays an important role in port machine diagnosis, which aims at automatic equipment test for higher availability and efficiency of port operations. In this study, a port machine diagnosis expert system is proposed based on multi-reasoning mechanism. Relying on the knowledge acquired from the experienced experts in the port machine engineering, the system builds a library of relative experience and a set of rules of reasoning and estimating. Multi-reasoning mechanism that simulates the decision-making process of domain experts is employed to achieve reliable diagnosis results. The reasoning machine integrates artificial neural network, uncertain decision making and decision tree, which complements each other by sustainable growing voting mechanism. The effect of this multi-reasoning mechanism is evaluated and validated by means of Matthew's Correlation Coefficient (MCC). The system incorporating the mechanism is successfully designed, implemented and applied in Shanghai Port.展开更多
The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passe...The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passenger queues at platform as dynamic stochastic process,a new probabilistic queuing method was developed based on probabilistic theory and discrete time Markov chain theory.This model can calculate remain passenger queues while considering different directions.Considering the stable or variable train arriving period and different platform crossing types,a series of model deformation research was carried out.The probabilistic approach allows to capture the cyclic behavior of queues,measures the uncertainty of a queue state prediction by computing the evolution of its probability in time,and gives any temporal distribution of the arrivals.Compared with the actual data,the deviation of experimental results is less than 20%,which shows the efficiency of probabilistic approach clearly.展开更多
This paper refutes the mechanistic interpretation of cellular dynamics and contends that the life-giving principle is sustained growth a biological system and is uninterrupted growth balanced in a dynamic state by syn...This paper refutes the mechanistic interpretation of cellular dynamics and contends that the life-giving principle is sustained growth a biological system and is uninterrupted growth balanced in a dynamic state by synthesis and dissolution. The process began by an oxidation/reduction reaction on the surface of pyrite energized photovoltaically by sunlight. Hydrogen sulfide was oxidized, carbon dioxide was reduced, and phosphate on the surface of the pyrite was a reactant. The first organic compounds were sulfides and phosphoglycerates. These organophosphates were at the center of the energy cycle of all life where the dehydration of a relatively unreactive "low-energy" two-phosphoglycerate transforms it into the "high-energy" phosphoenolpyruvate. Life began as a growth process and continues to grow ceaselessly out of necessity. It cannot discontinue the life-giving energy flow without irreparable loss of the process. All forms of life past and present were and are stabilized systems in which the growth process is contained in metabolic turnover.展开更多
Aviation kerosene is commonly used in combustion and regenerative engine cooling processes in propulsion and power-generation systems,including rocket,scramjet,and advanced gas turbine engines.In this paper,many surro...Aviation kerosene is commonly used in combustion and regenerative engine cooling processes in propulsion and power-generation systems,including rocket,scramjet,and advanced gas turbine engines.In this paper,many surrogate models proposed in the open literature are examined for their applicability and accuracy in calculating thermodynamic and transport properties of the China aviation kerosene RP-3 at supercritical pressures,based on the extended corresponding-states methods.The enthalpy change from endothermic decomposition and low heating value from combustion of the jet fuel are also evaluated.Results from a number of simple and representative surrogate models,which contain species components ranging from 1 to10,are analyzed in detail.Data analyses indicate that a surrogate model with four species is the best choice for thermophysical property calculations under the tested conditions,with fluid temperature up to 650 K at various supercritical pressures.The surrogate model is particularly accurate in predicting the pseudo-critical temperature of aviation kerosene RP-3 at a supercritical pressure.A simple surrogate model containing the n-decane species and a surrogate model containing 10 species are the other two acceptable options.The work conducted herein is of practical importance for theoretical analyses and numerical simulations of various physicochemical processes at engine operating conditions.展开更多
Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes,improving engine performance,and reducing pollutant emissions.Critical issues as turbulence model...Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes,improving engine performance,and reducing pollutant emissions.Critical issues as turbulence modeling,turbulence-chemistry interaction,and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for highfidelity combustion simulation.This paper reviews the current status of the state-of-the-art large eddy simulation(LES)/probability density function(PDF)/detailed chemistry approach that can address the three challenging modelling issues.PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described.Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified.Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41101349)Surveying and Mapping Scientific Research Projects of Jiangsu Province(No.JSCHKY201304)+1 种基金Program of Natural Science Research of Jiangsu Higher Education Institutions of China(No.13KJB420003)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Cellular Automata(CA) is widely used for the simulation of land use changes. This study applied a vector-based CA model to simulate land use change in order to minimize or eliminate the scale sensitivity in traditional raster-based CA model. The cells of vector-based CA model are presented according to the shapes and attributes of geographic entities, and the transition rules of vector-based CA model are improved by taking spatial variables of the study area into consideration. The vector-based CA model is applied to simulate land use changes in downtown of Qidong City, Jiangsu Province, China and its validation is confirmed by the methods of visual assessment and spatial accuracy. The simulation result of vector-based CA model reveals that nearly 75% of newly increased urban cells are located in the northwest and southwest parts of the study area from 2002 to 2007, which is in consistent with real land use map. In addition, the simulation results of the vector-based and raster-based CA models are compared to real land use data and their spatial accuracies are found to be 84.0% and 81.9%, respectively. In conclusion, results from this study indicate that the vector-based CA model is a practical and applicable method for the simulation of urbanization processes.
文摘Expert system plays an important role in port machine diagnosis, which aims at automatic equipment test for higher availability and efficiency of port operations. In this study, a port machine diagnosis expert system is proposed based on multi-reasoning mechanism. Relying on the knowledge acquired from the experienced experts in the port machine engineering, the system builds a library of relative experience and a set of rules of reasoning and estimating. Multi-reasoning mechanism that simulates the decision-making process of domain experts is employed to achieve reliable diagnosis results. The reasoning machine integrates artificial neural network, uncertain decision making and decision tree, which complements each other by sustainable growing voting mechanism. The effect of this multi-reasoning mechanism is evaluated and validated by means of Matthew's Correlation Coefficient (MCC). The system incorporating the mechanism is successfully designed, implemented and applied in Shanghai Port.
基金Project(2011BAG01B01) supported by the Major State Basic Research and Development Program of ChinaProject(RCS2012ZZ002) supported by the State Key Lab of Rail Traffic Control and Safety,China
文摘The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passenger queues at platform as dynamic stochastic process,a new probabilistic queuing method was developed based on probabilistic theory and discrete time Markov chain theory.This model can calculate remain passenger queues while considering different directions.Considering the stable or variable train arriving period and different platform crossing types,a series of model deformation research was carried out.The probabilistic approach allows to capture the cyclic behavior of queues,measures the uncertainty of a queue state prediction by computing the evolution of its probability in time,and gives any temporal distribution of the arrivals.Compared with the actual data,the deviation of experimental results is less than 20%,which shows the efficiency of probabilistic approach clearly.
文摘This paper refutes the mechanistic interpretation of cellular dynamics and contends that the life-giving principle is sustained growth a biological system and is uninterrupted growth balanced in a dynamic state by synthesis and dissolution. The process began by an oxidation/reduction reaction on the surface of pyrite energized photovoltaically by sunlight. Hydrogen sulfide was oxidized, carbon dioxide was reduced, and phosphate on the surface of the pyrite was a reactant. The first organic compounds were sulfides and phosphoglycerates. These organophosphates were at the center of the energy cycle of all life where the dehydration of a relatively unreactive "low-energy" two-phosphoglycerate transforms it into the "high-energy" phosphoenolpyruvate. Life began as a growth process and continues to grow ceaselessly out of necessity. It cannot discontinue the life-giving energy flow without irreparable loss of the process. All forms of life past and present were and are stabilized systems in which the growth process is contained in metabolic turnover.
基金supported by the National Natural Science Foundation of China(Grant No.11372277)
文摘Aviation kerosene is commonly used in combustion and regenerative engine cooling processes in propulsion and power-generation systems,including rocket,scramjet,and advanced gas turbine engines.In this paper,many surrogate models proposed in the open literature are examined for their applicability and accuracy in calculating thermodynamic and transport properties of the China aviation kerosene RP-3 at supercritical pressures,based on the extended corresponding-states methods.The enthalpy change from endothermic decomposition and low heating value from combustion of the jet fuel are also evaluated.Results from a number of simple and representative surrogate models,which contain species components ranging from 1 to10,are analyzed in detail.Data analyses indicate that a surrogate model with four species is the best choice for thermophysical property calculations under the tested conditions,with fluid temperature up to 650 K at various supercritical pressures.The surrogate model is particularly accurate in predicting the pseudo-critical temperature of aviation kerosene RP-3 at a supercritical pressure.A simple surrogate model containing the n-decane species and a surrogate model containing 10 species are the other two acceptable options.The work conducted herein is of practical importance for theoretical analyses and numerical simulations of various physicochemical processes at engine operating conditions.
基金supported by the 111 Project(Grant No.B13001)by the Young Thousand Talents Program from the Organization Department of the Communist Party of China Central Committee
文摘Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes,improving engine performance,and reducing pollutant emissions.Critical issues as turbulence modeling,turbulence-chemistry interaction,and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for highfidelity combustion simulation.This paper reviews the current status of the state-of-the-art large eddy simulation(LES)/probability density function(PDF)/detailed chemistry approach that can address the three challenging modelling issues.PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described.Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified.Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.