The detection of obstacles in a dynamic environment is a hot and difficult problem.A method of autonomously detecting obstacles based on laser radar is proposed as a safety auxiliary structure of tram.The nearest neig...The detection of obstacles in a dynamic environment is a hot and difficult problem.A method of autonomously detecting obstacles based on laser radar is proposed as a safety auxiliary structure of tram.The nearest neighbor method is used for spatial obstacles clustering from laser radar data.By analyzing the characteristics of obstacles,the types of obstacles are determined by time correlation.Experiments were carried out on the developed unmanned aerial vehicle(UAV),and the experimental results verify the effectiveness of the proposed method.展开更多
Recently, a new type of IMM (interacting multiple model) method was introduced based on the relatively new SVSF (smooth variable structure filter), and is referred to as the IMM-SVSF. The SVSF is a type of sliding...Recently, a new type of IMM (interacting multiple model) method was introduced based on the relatively new SVSF (smooth variable structure filter), and is referred to as the IMM-SVSF. The SVSF is a type of sliding mode estimator that is formulated in a predictor-corrector fashion. This strategy keeps the estimated state bounded within a region of the true state trajectory, thus creating a stable and robust estimation process. The IMM method may be utilized for fault detection and diagnosis, and is classified as a model-based method. In this paper, for the purposes of fault detection, the IMM-SVSF is applied through simulation on a simple battery system which is modeled from a hybrid electric vehicle.展开更多
Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduce...Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduced graphene oxide (rGO) via a simple hydrothermal procedure and subsequent thermal treatment. These Co3O4 nanowires, assembled by small nanoparticles, are interlaced with one another and make a spider web-like structure on rGO. The formation of Co3O4-rGO hybrids is attributed to the structure-directing and anchoring roles of DDA and GO, respectively. The resulting structure possesses abundant active sites, the oriented transmission of electrons, and unimpeded pathways for matter diffusion, which endows the Co3O4-rGO hybrids with excellent electrocatalytic performance. As a result, the obtained Co3O4-rGO hybrids can serve as an efficient electrochemical catalyst for H2O2 oxidation and high sensitivity detection. Under physiological conditions, the oxidation current of H2O2 varies linearly with respect to its concentration from 0.015 to 0.675 mM with a sensitivity of 1.14 mA.mM^-1.cm^-2 and a low detection limit of 2.4 μM. Furthermore, the low potential (-0.19 V) and the good selectivity make Co3O4-rGO hybrids suitable for monitoring H2O2 generated by liver cancer HepG2 cells. Therefore, it is promising as a non-enzymatic sensor to achieve real-time quantitative detection of H2O2 in biological applications.展开更多
基金National Key R&D Program of China(No.2017YFB1201003-020)Science and Technology Project of Gansu Education Department(No.2015B-041)
文摘The detection of obstacles in a dynamic environment is a hot and difficult problem.A method of autonomously detecting obstacles based on laser radar is proposed as a safety auxiliary structure of tram.The nearest neighbor method is used for spatial obstacles clustering from laser radar data.By analyzing the characteristics of obstacles,the types of obstacles are determined by time correlation.Experiments were carried out on the developed unmanned aerial vehicle(UAV),and the experimental results verify the effectiveness of the proposed method.
文摘Recently, a new type of IMM (interacting multiple model) method was introduced based on the relatively new SVSF (smooth variable structure filter), and is referred to as the IMM-SVSF. The SVSF is a type of sliding mode estimator that is formulated in a predictor-corrector fashion. This strategy keeps the estimated state bounded within a region of the true state trajectory, thus creating a stable and robust estimation process. The IMM method may be utilized for fault detection and diagnosis, and is classified as a model-based method. In this paper, for the purposes of fault detection, the IMM-SVSF is applied through simulation on a simple battery system which is modeled from a hybrid electric vehicle.
文摘Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduced graphene oxide (rGO) via a simple hydrothermal procedure and subsequent thermal treatment. These Co3O4 nanowires, assembled by small nanoparticles, are interlaced with one another and make a spider web-like structure on rGO. The formation of Co3O4-rGO hybrids is attributed to the structure-directing and anchoring roles of DDA and GO, respectively. The resulting structure possesses abundant active sites, the oriented transmission of electrons, and unimpeded pathways for matter diffusion, which endows the Co3O4-rGO hybrids with excellent electrocatalytic performance. As a result, the obtained Co3O4-rGO hybrids can serve as an efficient electrochemical catalyst for H2O2 oxidation and high sensitivity detection. Under physiological conditions, the oxidation current of H2O2 varies linearly with respect to its concentration from 0.015 to 0.675 mM with a sensitivity of 1.14 mA.mM^-1.cm^-2 and a low detection limit of 2.4 μM. Furthermore, the low potential (-0.19 V) and the good selectivity make Co3O4-rGO hybrids suitable for monitoring H2O2 generated by liver cancer HepG2 cells. Therefore, it is promising as a non-enzymatic sensor to achieve real-time quantitative detection of H2O2 in biological applications.