The characteristics of macrofauna communities in three mangrove assemblages [Avicennia marina+Acgiceras corniculatum (MC)community, A.corniculatum (C) community and Bruguiera gymnorrhiza+A.corniculatum (GC) co...The characteristics of macrofauna communities in three mangrove assemblages [Avicennia marina+Acgiceras corniculatum (MC)community, A.corniculatum (C) community and Bruguiera gymnorrhiza+A.corniculatum (GC) community] were studied in Zhanjiang Mangrove Nature Reserves during 2005 and 2006. Of the three mangrove assemblages, the macrofauna species number, density, biomass, Richness index and Shannon-Wiener index were the highest, and the Simpson dominance index was medial at MC community. However the Pielou Evenness index of MC community was slightly lower than that at C community. At C community, the number of macrofauna species obviously reduced, especially infaunal, caving and adhering life forms, and the biomass and density were the lowest. Because of the even distribution of individuals of different species, the Simpson dominance index was the lowest and the evenness index was the highest. Although the Richness index at C community was slightly lower than that at MC community, the Shannon-Wiener index was near to that at MC community. At GC community, the number of macrofauna species, especially infaunal and caving life forms, continued to decrease comparing C community, but the biomass and density increased slightly. As the distribution of individuals of different species was uneven, the Simpson dominance index was the highest and the Pielou Evenness index was the lowest. Furthermore, the Richness index dropped to the lowest. The Shannon-Wiener index also dropped accordingly to the lowest. The dominant life forms of MC were infaunal and caving, while those of C and GC community were both caving. The ratio of the GS/GSB of macrofauna communities in the three mangrove assemblages were 0.48, 0.63 and 0.80, respectively. The community structures at the same mangrove assemblages were all quite similar, with those at GC community being most similar. However, there were obvious differences among the community structures at the three different mangrove assemblages. These results implied that the different mangrove assemblages had different affects on the macrofauna communities and shed light on the macrofauna adaptation capability to specific habitats.展开更多
The seasonal dynamics of a crustacean zooplankton community in Erhai Lake was investigated from May 2010 to April 2011. In total, 11 species were recorded, including six(6 genera) cladoceran and five(5 genera) copepod...The seasonal dynamics of a crustacean zooplankton community in Erhai Lake was investigated from May 2010 to April 2011. In total, 11 species were recorded, including six(6 genera) cladoceran and five(5 genera) copepod species. The crustacean zooplankton densities ranged from 24.3 to 155.4 ind./L. In winter and spring, the large-bodied cladoceran Daphnia galeata dominated the crustacean plankton community. In summer and autumn, when the colonial or filamentous algae dominated the phytoplankton communities, the small-bodied species(e.g. B osmina fatalis, Ceriodaphnia quadrangular, and Mesocyclops leuckarti) replaced the large-bodied ones. One-way ANOVA and redundancy analysis revealed that community structure was dependent upon total nitrogen, total phosphorus, water temperature, transparency, and the biomass of small algae. The variation in both phytoplankton structure and environmental variables were important factors in the seasonal succession of crustacean zooplankton structure in Erhai Lake.展开更多
Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soi...Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.展开更多
When facilitating other species and sustaining plant community structures and biodiversity,alpine cushion plants simultaneously experience negative feedback effects from surrounding vegetation.However,the impact of su...When facilitating other species and sustaining plant community structures and biodiversity,alpine cushion plants simultaneously experience negative feedback effects from surrounding vegetation.However,the impact of surrounding vegetation on cushion dynamics remains poorly understood,particularly in terms of allelopathic potentials.To investigate the allelopathic potentials of surrounding vegetation on seedling establishment of the typical cushion plant Arenaria polytrichoides Edgew.along an elevational gradient,we extracted potential allelopathic compounds and tested their impacts on seed germination and seedling growth of A.polytrichoides.In addition,exclusion experiments using activated carbon were conducted to further elucidate these effects.Our results demonstrate that surrounding vegetation exhibits certain allelopathic potentials on A.polytrichoides seedling establishment,with variations observed based on elevation,source and concentration of allelopathy compounds,as well as growing season.Specifcally,low-elevation vegetation exerts pronounced suppression on seedling establishment.Conversely,higher-elevation vegetation generally shows no effect on seed germination but stimulates seedling growth through allelopathy mechanisms.Moreover,aboveground vegetation predominantly inhibits both seed germination and seedling growth in low-elevation communities;however,the effects of belowground vegetation depend on elevation and extract concentration levels.The identifed allelopathic potentials of surrounding vegetation signifcantly infuence the population dynamics of cushion A.polytrichoides by potentially accelerating population degeneration in lower-elevation communities while ensuring consistent population recruitment and expansion in higher-elevation communities.展开更多
Phytoplankton play an irreplaceable role as producers in maintaining lake ecosystems.Nevertheless,scant attention has been given to investigating the dispersion of phytoplankton communities and the factors influencing...Phytoplankton play an irreplaceable role as producers in maintaining lake ecosystems.Nevertheless,scant attention has been given to investigating the dispersion of phytoplankton communities and the factors influencing them across expansive areas.In this study,we present the results of a survey on the distribution of phytoplankton community and the effects of different driving factors in 11 lakes along Inner Mongolia in July–August 2020.Non-metric multidimensional scaling analysis and variance decomposition(VPA)were used to elucidate the distribution of phytoplankton communities and the response of drivers.A total of 169 species of phytoplankton from 8 phyla were detected.Both the abundance and diversity of phytoplankton in the Inner Mongolia lakes showed a trend of high in the east and low in the west(with Daihai Lake as the boundary).The Margalef index of phytoplankton significantly negatively correlated with salinity(r=−0.707,P<0.05)and total dissolved solids(r=−0.720,P<0.05),and both density and biomass highly significantly positively correlated with the suspended solids,Chlorophyll a and trophic level index.The VPA explained 38.9%of the changes in the phytoplankton community with the highest rate of explanation of land use.Therefore,preventing anthropogenic impacts,as well as reducing nutrient loads,can effectively ensure the ecological diversity of lake phytoplankton in lake populations with large geographical spans and varying levels of nutrients.展开更多
"Australia has produced some of the world’s leading scholars,particularly in the professional fields of accounting and finance."—The Head and Dean of the University of Queensland Professor Tim Brailsford.
Aims Given the key functional role of understorey plant communities and the substantial extent of forest cover at the global scale,investigating understorey community responses to elevated CO_(2)(eCO_(2))concentration...Aims Given the key functional role of understorey plant communities and the substantial extent of forest cover at the global scale,investigating understorey community responses to elevated CO_(2)(eCO_(2))concentrations,and the role of soil resources in these responses,is important for understanding the ecosystem-level consequences of rising CO_(2)concentrations for forest ecosystems.Here,we evaluated how experimentally manipulating the availabilities of the two most limiting resources in an extremely phosphorus-limited eucalypt woodland in eastern Australia(i.e.water and phosphorus)can modulate the response of the understorey community to eCO_(2)in terms of germination,phenology,cover,community composition and leaf traits.Methods We collected soil containing native soil seed bank to grow experimental understorey plant communities under glasshouse conditions.Important Findings Phosphorus addition increased total plant cover,particularly during the first 4 weeks of growth and under high water conditions,a response driven by the graminoid component of the plant community.However,the treatment differences diminished as the experiment progressed,with all treatments converging at〜80%lant cover after〜11 weeks.In contrast,plant cover was not affected by eCO_(2).Multivariate analyses reflected temporal changes in the composition of plant communities,from pots where bare soil was dominant to high-cover pots dominated by a diverse community.However,both phosphorus addition and the interaction between water availability and CO_(2)affected the temporal trajectory of the plant community during the experiment.eCO_(2)also increased community-level specific leaf area,suggesting that functional adaptation of plant communities to CO_(2)may precede the onset of compositional responses.Given that the response of our seed bank-derived understorey community to CO_(2)developed over time and was mediated by interactions with phosphorus and water availability,our results suggest a limited role of eCO_(2)in shaping plant communities in water-limited systems,particularly where low soil nutrient availability constrains productivity responses.展开更多
Aims Functional traits are usually used to predict plant demographic rates without considering environmental contexts.However,previous studies have consistently found that traits have low explanatory power for plant d...Aims Functional traits are usually used to predict plant demographic rates without considering environmental contexts.However,previous studies have consistently found that traits have low explanatory power for plant demographic rates.We hypothesized that accounting for environmental contexts instead of focusing on traits alone could improve our understanding of how traits influence plant demographic rates.Methods We used generalized linear mixed-effect models to analyse the effects of functional traits(related to leaf,stem,seed and whole plant),environmental gradients(soil nutrients,water and elevation)and their interactions on the survival dynamics of 14133 saplings and 3289 adults in a 9-ha old-growth temperate forest plot.Important Findings We found that environmental variables,neighbour crowding and traits alone(i.e.main effects)influenced plant survival.However,the effects of the latter two variables varied between saplings and adults.The trait–environment interactions influenced plant survival,such that resource conservative traits increased plant survival under harsh conditions but decreased survival under mild conditions.The elevational gradient was the most important environmental factor driving these effects in our plot.Our results support the hypothesis that functional traits influence plant survival depending on environmental contexts in local communities.These results also imply that one species with limited trait variation cannot occupy all environments,which can promote species diversity.展开更多
The relationships of Madagascan plant and animal taxa have been the object of much fascination, Madagascar sharing numerous lineages with Africa, others with Asia, Australia, or the Americas, and many others being of ...The relationships of Madagascan plant and animal taxa have been the object of much fascination, Madagascar sharing numerous lineages with Africa, others with Asia, Australia, or the Americas, and many others being of uncertain relationships. In commonly accepted global regionalization schemata, Madagascar is treated together with Africa for animals, and with Africa, tropical Asia and the Pacific islands in the case of plants. Here we examine the similarities between the biotic assemblages of (i) tropical Africa, (ii) Madagascar, and (iii) the rest of the world, on a basic taxonomic level, considering the families of vascular plants and vertebrates as analysis units. The percentages of endemic families, families shared pair-wise between regions, or pre- sent in all three, are roughly similar between the two broad groups, though plant families with ranges limited to one region are proportionally fewer. In dendrograms and multidimensional scaling plots for different groups, Madagascar clusters together with Africa, Asia or both, and sometimes with smaller Indian Ocean Islands, but quite often (though not in plants) as a convincingly separate cluster. Our results for vertebrates justify the status of full zoogeographic region for Madagascar, though an equally high rank in geobotanical regionalization would mean also treating Africa and Tropical Asia as separate units, which would be debata- ble given the overall greater uniformity of plant assemblages. Beyond the Madagascan focus of this paper, the differences be- tween plant and vertebrate clusters shown here suggest different levels of ecological plasticity at the same taxonomic level, with plant families being much more environmentally-bound, and thus clustering along biome lines rather than regional lines [Current Zoology 58 (3): 363-374, 2012].展开更多
文摘The characteristics of macrofauna communities in three mangrove assemblages [Avicennia marina+Acgiceras corniculatum (MC)community, A.corniculatum (C) community and Bruguiera gymnorrhiza+A.corniculatum (GC) community] were studied in Zhanjiang Mangrove Nature Reserves during 2005 and 2006. Of the three mangrove assemblages, the macrofauna species number, density, biomass, Richness index and Shannon-Wiener index were the highest, and the Simpson dominance index was medial at MC community. However the Pielou Evenness index of MC community was slightly lower than that at C community. At C community, the number of macrofauna species obviously reduced, especially infaunal, caving and adhering life forms, and the biomass and density were the lowest. Because of the even distribution of individuals of different species, the Simpson dominance index was the lowest and the evenness index was the highest. Although the Richness index at C community was slightly lower than that at MC community, the Shannon-Wiener index was near to that at MC community. At GC community, the number of macrofauna species, especially infaunal and caving life forms, continued to decrease comparing C community, but the biomass and density increased slightly. As the distribution of individuals of different species was uneven, the Simpson dominance index was the highest and the Pielou Evenness index was the lowest. Furthermore, the Richness index dropped to the lowest. The Shannon-Wiener index also dropped accordingly to the lowest. The dominant life forms of MC were infaunal and caving, while those of C and GC community were both caving. The ratio of the GS/GSB of macrofauna communities in the three mangrove assemblages were 0.48, 0.63 and 0.80, respectively. The community structures at the same mangrove assemblages were all quite similar, with those at GC community being most similar. However, there were obvious differences among the community structures at the three different mangrove assemblages. These results implied that the different mangrove assemblages had different affects on the macrofauna communities and shed light on the macrofauna adaptation capability to specific habitats.
基金Supported by the National Natural Science Foundation of China(No.31070387)the National Water Pollution Control and Management Technology Major Projects of China(No.2008ZC07105-005)
文摘The seasonal dynamics of a crustacean zooplankton community in Erhai Lake was investigated from May 2010 to April 2011. In total, 11 species were recorded, including six(6 genera) cladoceran and five(5 genera) copepod species. The crustacean zooplankton densities ranged from 24.3 to 155.4 ind./L. In winter and spring, the large-bodied cladoceran Daphnia galeata dominated the crustacean plankton community. In summer and autumn, when the colonial or filamentous algae dominated the phytoplankton communities, the small-bodied species(e.g. B osmina fatalis, Ceriodaphnia quadrangular, and Mesocyclops leuckarti) replaced the large-bodied ones. One-way ANOVA and redundancy analysis revealed that community structure was dependent upon total nitrogen, total phosphorus, water temperature, transparency, and the biomass of small algae. The variation in both phytoplankton structure and environmental variables were important factors in the seasonal succession of crustacean zooplankton structure in Erhai Lake.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-06)
文摘Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.
基金supported by the Second Tibetan Plateau Scientifc Expedition and Research Program(2019QZKK0502)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20050203)+1 种基金the Yunnan Applied Basic Research Project(202001AT070060,202301AS070058)the Young Academic and Technical Leader Raising Foundation of Yunnan Province(202205AC160053)。
文摘When facilitating other species and sustaining plant community structures and biodiversity,alpine cushion plants simultaneously experience negative feedback effects from surrounding vegetation.However,the impact of surrounding vegetation on cushion dynamics remains poorly understood,particularly in terms of allelopathic potentials.To investigate the allelopathic potentials of surrounding vegetation on seedling establishment of the typical cushion plant Arenaria polytrichoides Edgew.along an elevational gradient,we extracted potential allelopathic compounds and tested their impacts on seed germination and seedling growth of A.polytrichoides.In addition,exclusion experiments using activated carbon were conducted to further elucidate these effects.Our results demonstrate that surrounding vegetation exhibits certain allelopathic potentials on A.polytrichoides seedling establishment,with variations observed based on elevation,source and concentration of allelopathy compounds,as well as growing season.Specifcally,low-elevation vegetation exerts pronounced suppression on seedling establishment.Conversely,higher-elevation vegetation generally shows no effect on seed germination but stimulates seedling growth through allelopathy mechanisms.Moreover,aboveground vegetation predominantly inhibits both seed germination and seedling growth in low-elevation communities;however,the effects of belowground vegetation depend on elevation and extract concentration levels.The identifed allelopathic potentials of surrounding vegetation signifcantly infuence the population dynamics of cushion A.polytrichoides by potentially accelerating population degeneration in lower-elevation communities while ensuring consistent population recruitment and expansion in higher-elevation communities.
基金funded by the National Natural Science Foundation of China(52279067 and 51869014)National Key Research and Development Program of China(2021YFC3201203)Open Project Program of the Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau(KF2020006).
文摘Phytoplankton play an irreplaceable role as producers in maintaining lake ecosystems.Nevertheless,scant attention has been given to investigating the dispersion of phytoplankton communities and the factors influencing them across expansive areas.In this study,we present the results of a survey on the distribution of phytoplankton community and the effects of different driving factors in 11 lakes along Inner Mongolia in July–August 2020.Non-metric multidimensional scaling analysis and variance decomposition(VPA)were used to elucidate the distribution of phytoplankton communities and the response of drivers.A total of 169 species of phytoplankton from 8 phyla were detected.Both the abundance and diversity of phytoplankton in the Inner Mongolia lakes showed a trend of high in the east and low in the west(with Daihai Lake as the boundary).The Margalef index of phytoplankton significantly negatively correlated with salinity(r=−0.707,P<0.05)and total dissolved solids(r=−0.720,P<0.05),and both density and biomass highly significantly positively correlated with the suspended solids,Chlorophyll a and trophic level index.The VPA explained 38.9%of the changes in the phytoplankton community with the highest rate of explanation of land use.Therefore,preventing anthropogenic impacts,as well as reducing nutrient loads,can effectively ensure the ecological diversity of lake phytoplankton in lake populations with large geographical spans and varying levels of nutrients.
文摘"Australia has produced some of the world’s leading scholars,particularly in the professional fields of accounting and finance."—The Head and Dean of the University of Queensland Professor Tim Brailsford.
基金R.O.-H.is supported by a Ramon y Cajal Fellowship from MICIU(RYC-2017-22032)projects(PID2019-106004RA-I00).
文摘Aims Given the key functional role of understorey plant communities and the substantial extent of forest cover at the global scale,investigating understorey community responses to elevated CO_(2)(eCO_(2))concentrations,and the role of soil resources in these responses,is important for understanding the ecosystem-level consequences of rising CO_(2)concentrations for forest ecosystems.Here,we evaluated how experimentally manipulating the availabilities of the two most limiting resources in an extremely phosphorus-limited eucalypt woodland in eastern Australia(i.e.water and phosphorus)can modulate the response of the understorey community to eCO_(2)in terms of germination,phenology,cover,community composition and leaf traits.Methods We collected soil containing native soil seed bank to grow experimental understorey plant communities under glasshouse conditions.Important Findings Phosphorus addition increased total plant cover,particularly during the first 4 weeks of growth and under high water conditions,a response driven by the graminoid component of the plant community.However,the treatment differences diminished as the experiment progressed,with all treatments converging at〜80%lant cover after〜11 weeks.In contrast,plant cover was not affected by eCO_(2).Multivariate analyses reflected temporal changes in the composition of plant communities,from pots where bare soil was dominant to high-cover pots dominated by a diverse community.However,both phosphorus addition and the interaction between water availability and CO_(2)affected the temporal trajectory of the plant community during the experiment.eCO_(2)also increased community-level specific leaf area,suggesting that functional adaptation of plant communities to CO_(2)may precede the onset of compositional responses.Given that the response of our seed bank-derived understorey community to CO_(2)developed over time and was mediated by interactions with phosphorus and water availability,our results suggest a limited role of eCO_(2)in shaping plant communities in water-limited systems,particularly where low soil nutrient availability constrains productivity responses.
基金This study was financially supported by the NationalNatural Science Foundation of China(31870399,32071533)the Strategic Priority ResearchProgram of the Chinese Academy of Sciences(XDB31030000).
文摘Aims Functional traits are usually used to predict plant demographic rates without considering environmental contexts.However,previous studies have consistently found that traits have low explanatory power for plant demographic rates.We hypothesized that accounting for environmental contexts instead of focusing on traits alone could improve our understanding of how traits influence plant demographic rates.Methods We used generalized linear mixed-effect models to analyse the effects of functional traits(related to leaf,stem,seed and whole plant),environmental gradients(soil nutrients,water and elevation)and their interactions on the survival dynamics of 14133 saplings and 3289 adults in a 9-ha old-growth temperate forest plot.Important Findings We found that environmental variables,neighbour crowding and traits alone(i.e.main effects)influenced plant survival.However,the effects of the latter two variables varied between saplings and adults.The trait–environment interactions influenced plant survival,such that resource conservative traits increased plant survival under harsh conditions but decreased survival under mild conditions.The elevational gradient was the most important environmental factor driving these effects in our plot.Our results support the hypothesis that functional traits influence plant survival depending on environmental contexts in local communities.These results also imply that one species with limited trait variation cannot occupy all environments,which can promote species diversity.
文摘The relationships of Madagascan plant and animal taxa have been the object of much fascination, Madagascar sharing numerous lineages with Africa, others with Asia, Australia, or the Americas, and many others being of uncertain relationships. In commonly accepted global regionalization schemata, Madagascar is treated together with Africa for animals, and with Africa, tropical Asia and the Pacific islands in the case of plants. Here we examine the similarities between the biotic assemblages of (i) tropical Africa, (ii) Madagascar, and (iii) the rest of the world, on a basic taxonomic level, considering the families of vascular plants and vertebrates as analysis units. The percentages of endemic families, families shared pair-wise between regions, or pre- sent in all three, are roughly similar between the two broad groups, though plant families with ranges limited to one region are proportionally fewer. In dendrograms and multidimensional scaling plots for different groups, Madagascar clusters together with Africa, Asia or both, and sometimes with smaller Indian Ocean Islands, but quite often (though not in plants) as a convincingly separate cluster. Our results for vertebrates justify the status of full zoogeographic region for Madagascar, though an equally high rank in geobotanical regionalization would mean also treating Africa and Tropical Asia as separate units, which would be debata- ble given the overall greater uniformity of plant assemblages. Beyond the Madagascan focus of this paper, the differences be- tween plant and vertebrate clusters shown here suggest different levels of ecological plasticity at the same taxonomic level, with plant families being much more environmentally-bound, and thus clustering along biome lines rather than regional lines [Current Zoology 58 (3): 363-374, 2012].