期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多类型电流互感器混联运行动模测试平台建设及对差动保护的影响 被引量:7
1
作者 廖文彪 周泽昕 +4 位作者 詹荣荣 李岩军 陈争光 董明会 詹智华 《电力系统保护与控制》 EI CSCD 北大核心 2017年第22期83-89,共7页
分析线路两侧的多类型电流互感器混联运行特性,理论推导混联运行的差流表达式,并分析其影响因素。在此基础上,研究多类型电流互感器混联运行动模测试方法,设计6种测试方案,制作与实际电流互感器等效的P级电流互感器、TPY级电流互感器及... 分析线路两侧的多类型电流互感器混联运行特性,理论推导混联运行的差流表达式,并分析其影响因素。在此基础上,研究多类型电流互感器混联运行动模测试方法,设计6种测试方案,制作与实际电流互感器等效的P级电流互感器、TPY级电流互感器及电子式电流互感器模型,并搭建混联运行动模测试平台。基于以上测试平台,对多类型电流互感器的传递性能差异对比测试,通过连续两次区外故障时混联运行的比率制动特性及动作轨迹,分析混联运行对差动保护的影响,提出相应的改进措施。 展开更多
关键词 多类型电流互感器混联运行 动模测试方法 测试方案 测试平台
下载PDF
One neural network approach for the surrogate turbulence model in transonic flows 被引量:2
2
作者 Linyang Zhu Xuxiang Sun +1 位作者 Yilang Liu Weiwei Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第3期38-51,I0002,共15页
With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbul... With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbulence in aerodynamics,our previous work built a data-driven model applicable to subsonic airfoil flows with different free stream conditions.The results calculated by the proposed model are encouraging.In this work,we aim to model the turbulence of transonic wing flows with fully connected deep neural networks,where there is less research at present.The proposed model is driven by two flow cases of the ONERA(Office National d'Etudes et de Recherches Aerospatiales)wing and coupled with the Navier-Stokes equation solver.Four subcritical and transonic benchmark cases of different wings are used to evaluate the model performance.The iteration process is stable,and final convergence is achieved.The proposed model can be used to surrogate the traditional Reynolds averaged Navier-Stokes turbulence model.Compared with the data calculated by the Spallart-Allmaras model,the results show that the proposed model can be well generalized to the test cases.The mean relative error of the drag coefficient at different sections is below 4%for each case.This work demonstrates that modeling turbulence by data-driven methods is feasible and that our modeling pattern is effective. 展开更多
关键词 Deep neural network Turbulence modeling TRANSONIC High Reynolds number
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部