The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated...The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated through the calculation of the Hertzian contact stress.Based on the above results and the sliding velocity between the rotors,a genetic algorithm (GA) was used as an optimization technique forminimizing the wear rate proportional factor (WRPF).The result shows that the wear rate or the WRPF can be reduced considerably,e.g.approximately 12.8%,throughout the optimization using GA.展开更多
A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid bou...A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid boundaries including the seabed. A peculiarity of the proposed implementation is the application of the so-called "moving-patch" method for simulating steady boundaries of large extensions. The method is based on an assumption that at any moment just the part of the boundary ("moving patch") which lies close to the interacting ship is significant for the near-field interaction. For a specific case of the fiat bottom, comparative computations were performed to determine optimal dimensions of the patch and of the constituting panels based on the trade-off between acceptable accuracy and reasonable efficiency. The method was applied to estimate the sway force on a ship hull moving obliquely across a dredged channel. The method was validated for a case of ship-to-ship interaction when tank data were available. This study also contains a description of a newly developed spline approximation algorithm necessary for creating consistent discretizations of ship hulls with various degrees of refinement.展开更多
In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the eff...In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the effect of hydrodynamic forces controlling CBM reservoir formations was studied by a physical simulation experiment in which we used CBM reservoir simulation facilities. The hydrodynamic conditions of high coal rank reservoirs in the Qinshui basin were analyzed. Our experiment shows the following results: under strong hydrodynamic alternating action, 6C~ of coalbed methane reservoir changed from the start at -2.95% ~ -3.66%, and the lightening process occurred in phases; the CI-I4 volume reduced from 96.35% to 12.42%; the CO2 vo- lume decreased from 0.75% in sample 1 to 0.68% in sample 2, then rose to 1.13% in sample 3; the N2 volume changed from 2.9% in sample 1 to 86.45% in sample 3. On one hand, these changes show the complexity of CBM reservoir formation; on the other hand, they indicate that strong hydrodynamic actions have an unfavorable impact on CBM reservoir formation. It was found that the gas volume and hydrodynamic intensity were negatively correlated and low hydrodynamic flow conditions might result in highly productive and enriched areas of high rank CBM.展开更多
Maximum rate of food consumption (C max) was determined for juvenile Sebastodes fuscescens (Houttuyn) at water temperature of 10, 15, 20 and 25℃. The relationships of C max to the body weight (W) at each temperature ...Maximum rate of food consumption (C max) was determined for juvenile Sebastodes fuscescens (Houttuyn) at water temperature of 10, 15, 20 and 25℃. The relationships of C max to the body weight (W) at each temperature were described by a power equation: lnC max = a + b lnW. Covariance analysis revealed significant interaction of the temperature and body weight. The relationship of adjusted C max to water temperature (T) was described by a quadratic equation: C max =-0.369 + 0.456T - 0.0117T 2. The optimal feeding temperature calculated from this equation was 19.5℃. The coefficients of the multiple regression estimation relating C max to body weight (W) and water temperature (T) were given in the Table 2.展开更多
To predict the flow evolution of fish swimming problems,a flow solver based on the immersed boundary lattice Boltzmann method is developed.A flexible iterative algorithm based on the framework of implicit boundary for...To predict the flow evolution of fish swimming problems,a flow solver based on the immersed boundary lattice Boltzmann method is developed.A flexible iterative algorithm based on the framework of implicit boundary force correction is used to save the computational cost and memory,and the momentum forcing is described by a simple direct force formula without complicated integral calculation when the velocity correction at the boundary node is determined.With the presented flow solver,the hydrodynamic interaction between the fish-induced dynamic stall vortices and the incoming vortices in unsteady flow is analyzed.Numerical simulation results unveil the mechanism of fish exploiting vortices to enhance their own hydrodynamic performances.The superior swimming performances originate from the relative movement between the“merged vortex”and the locomotion of the fishtail,which is controlled by the phase difference.Formation conditions of the“merged vortex”become the key factor for fish to exploit vortices to improve their swimming performance.We further discuss the effect of the principal components of locomotion.From the results,we conclude that lateral translation plays a crucial role in propulsion while body undulation in tandem with rotation and head motion reduce the locomotor cost.展开更多
Dam breaks are easily triggered by heavy rains due to extreme weather such as typhoons,causing serious economic losses and casualties.Through the investigation of Chaoshan coastal zone,it is found that there have been...Dam breaks are easily triggered by heavy rains due to extreme weather such as typhoons,causing serious economic losses and casualties.Through the investigation of Chaoshan coastal zone,it is found that there have been dam breaks caused by geological disasters.In the design and management of water conservancy project,it is very important to analyze the effect of disastrous flow caused by dam break on the building.In this paper,the effect of the dam break flow on the cylinder is simulated numerically by taking the water body with initial velocity as the dam break flow,and the flow characteristics around the cylinder and the water body are analyzed.Numerical model adopted the Renault Average Navier-Stokes(RANS)model and volume of fluid(VOF)method to analyze the evolution of free water surface.It is found that there are different patterns of water movement in the process of dam break resulting in the creation of several isolated convex hull forms of dam-break waves on the stationary water surface,which causes longer disturbances in the water near the cylinder and makes the cylinder more vulnerable to fatigue damage.The increase of the height of the dam breaking water will lead to the increase of the hydrodynamic force on the pipeline.This study has guiding significance for the study of dam break and dam body design in water conservancy projects.展开更多
Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic ...Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.展开更多
The motion of the fins and control surfaces of underwater vehicles in a fluid is an interesting and challenging research subject.Typically the effect of fin oscillations on the fluid flow around such a body is highly ...The motion of the fins and control surfaces of underwater vehicles in a fluid is an interesting and challenging research subject.Typically the effect of fin oscillations on the fluid flow around such a body is highly unsteady, generating vortices and requiring detailed analysis of fluid-structure interactions.An understanding of the complexities of such flows is of interest to engineers developing vehicles capable of high dynamic performance in their propulsion and maneuvering.In the present study, a CFD based RANS simulation of a 3-D fin body moving in a viscous fluid was developed.It investigated hydrodynamic performance by evaluating the hydrodynamic coefficients (lift, drag and moment) at two different oscillating frequencies.A parametric analysis of the factors that affect the hydrodynamic performance of the fin body was done, along with a comparison of results from experiments.The results of the simulation were found in close agreement with experimental results and this validated the simulation as an effective tool for evaluation of the unsteady hydrodynamic coefficients of 3-D fins.This work can be further be used for analysis of the stability and maneuverability of fin actuated underwater vehicles.展开更多
Dynamic effects of NO2--N accumulation were discussed owing to temperature.In different temperature,a series of vmax and Ks were found considering the relation between the temperature and rate of ammonia nitrogen tran...Dynamic effects of NO2--N accumulation were discussed owing to temperature.In different temperature,a series of vmax and Ks were found considering the relation between the temperature and rate of ammonia nitrogen transforming into NO2--N.The kinetics models,which reflected the conditions of ammonia nitrogen transforming into NO2--N in the treatment process of the coking wastewater,were built up.The characteristic coefficient temperature was determined according to Arrhenius.展开更多
The orientation of the dimple increases the flow distance in the dimple and produces fluid cumulative effect in the dimple length direction, which leads to obvious hydrodynamic effect as a result. In order to investig...The orientation of the dimple increases the flow distance in the dimple and produces fluid cumulative effect in the dimple length direction, which leads to obvious hydrodynamic effect as a result. In order to investigate the hydrodynamic effect of orientation dimples, a series of experiments was carried out on a ring-on-ring test. Multi-pored faces were tested with different dimple inclination angles and slender ratios. Film thickness and frictional torque were measured under different conditions of load and rotation speed. Experimental results showed that the orientation dimple could produce obvious dynamic effect by change of the flow direction and the increasing dimple orientation leads to increase of the load capability. The hydrodynamic effect strongly depends on dimple orientation parameters such as inclination angle and slender ratio. A larger load capability can be available by increasing dimple orientation and rotation speed. Experimental results agreed well with the theory that orientation micro-pores can significantly improve hydrodynamic performance of surfaces.展开更多
The Gay-Berne (GB) model has been proved to be highly successful in the simulation of liquid crystal phases via both molec- ular dynamics (MD) and nonequilibrium molecular dynamics (NEMD). However, the conventio...The Gay-Berne (GB) model has been proved to be highly successful in the simulation of liquid crystal phases via both molec- ular dynamics (MD) and nonequilibrium molecular dynamics (NEMD). However, the conventional thermostats used in the simulations of GB systems, such as Nose-Hoover and Langevin thermostats, have serious shortcomings especially in NEMD simulations. Recently, dissipative particle dynamics (DPD) has established itself as a useful thermostat for soft matter simulations, whereas the application of DPD thermostat in (NE)MD simulations is limited to the spherically isotropic potential models, such as the Lennard-Jones model. Considering the virtues of the DPD thermostat, that is, local, momentum conserved, and Galilean invariant, we extend the DPD thermostat to the non-spherical GB model. It is interesting to find that the translational DPD and rotational DPD thermostats can be used in the GB system independently and both can achieve the thermostatting effects. Also, we compared the performance of the DPD thermostat with other commonly used thermostats in NEMD simulations by investigating the streaming velocity profiles and the dynamics of phase separation in a typical but simple binary GB mixture under shear field. It is revealed that the known virtues of DPD thermostats, such as Galilean invariant, shear velocity profile-unbiased, and unscreened hydrodynamic interactions, are still intact when applying to GB systems. Finally, the appro- priate parameters for the DPD thermostat in the GB system are identified for future investigations.展开更多
The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas(FLNG) system,which is a new type of fl...The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas(FLNG) system,which is a new type of floating LNG(Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants.In particular,this study focuses on the investigation of the roll response of FLNG hull in free-decay motions,white noise waves and also in irregular waves.Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out.Response Amplitude Operators(RAOs) and time histories of the responses are obtained for sway,roll and yaw motions.Obvious Low Frequency(LF) components of the roll motions are observed,which may be out of expectation.To facilitate the physical understanding of this phenomenon,we filter the roll motions at the period of 30 s into two parts:the Wave Frequency(WF) motions and the Low Frequency(LF) motions respectively.The results indicate that the LF motions are closely related to the sway and yaw motions.Possible reasons for the presence of the LF motions of roll have been discussed in detail,through the comparison with the sway and yaw motions.As for the numerical part,the simulation of the modeled case is conducted with the help of the software SESAM.A good agreement between experiments and calculations is reported within the scope of trends.However,the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.展开更多
Steel lazy wave catenary riser (SLWR) has been an attractive choice for deepwater oil field developments. However, fatigue is a critical issue in assessing the feasibility of applying SLWR to large motion vessels such...Steel lazy wave catenary riser (SLWR) has been an attractive choice for deepwater oil field developments. However, fatigue is a critical issue in assessing the feasibility of applying SLWR to large motion vessels such as floating production storage and offloading (FPSO) or semi-submersibles. In this work, the time-domain fatigue analysis of SLWR was adopted for better representing the structural nonlinearity, fluid load nonlinearity and riser-soil nonlinear interaction. The Palmgren-Miner rule was employed for the fatigue life prediction along the riser length. The main purpose of this analysis is to present sensitivity analyses of SLWR fatigue life under various input parameters, which include the structural damping, the hydrodynamic coefficients along the riser, the seabed stiffness, the vessel motions, etc. The analyses indicated the strong dependence of the riser fatigue life on these parameters. The results can help designers to understand the dynamic behavior of the SLWR and provide guidance for selection of some critical parameters that are used in the fatigue design.展开更多
A simultaneous visualization and measurement experiment was carried out to investigate condensation flow pat- terns and condensing heat transfer characteristics of refrigerant R14 lb in parallel horizontal multi-chann...A simultaneous visualization and measurement experiment was carried out to investigate condensation flow pat- terns and condensing heat transfer characteristics of refrigerant R14 lb in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 ram. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal mul- ti-channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were per- formed at different inlet superheat temperatures (ranging from 3~C to 7~C). Mass velocity was in the range of 82.37 kg mZs1 to 35.56 kg m-2s1. It was found that there were three different flow patterns through the mul- ti-channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows.' The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.展开更多
The diffusion behavior of polyelectrolytes in dilute salt-free solution is studied through a hybrid mesoscale simulation technique that combines the molecular dynamics method and the multiparticle collision dynamics a...The diffusion behavior of polyelectrolytes in dilute salt-free solution is studied through a hybrid mesoscale simulation technique that combines the molecular dynamics method and the multiparticle collision dynamics approach.To elucidate the effects of hydrodynamic interactions(HI),we compare results for hydrodynamic and random solvents.When HI are taken into account,we find that the chain diffusivity decreases initially and then increases gradually with the increasing strength of the Coulomb interaction.By contrast,when HI are switched off,the electrostatic-dependent diffusivity shows three distinct regions,and a plateau of approximately constant diffusivity manifests between two decreasing regions.The findings reveal that the dynamics of polyelectrolytes in dilute solution depend on the coupling effects of hydrodynamic and Coulomb interactions,and that these dynamics can be understood by considering the conformational changes of chains,the counterion condensation,and the dynamics of counterions.展开更多
Peptides/proteins aggregation can give rise to pathological conditions of many human diseases.Small partially ordered oligomers formed in the early stage of aggregation,rather than mature fibrils,are thought to be the...Peptides/proteins aggregation can give rise to pathological conditions of many human diseases.Small partially ordered oligomers formed in the early stage of aggregation,rather than mature fibrils,are thought to be the main toxicity agent for the living cell.Thus,understanding the pathway and the underlying physical mechanism in the early stage of aggregation is very important for prevention and treatment of these protein functional diseases.Herein we use all-atom molecular dynamics simulations to study the aggregation of four NFGAIL hexapeptides(NFGAIL peptide is a core segment of human islet amyloid polypeptide and exhibits similar aggregation kinetics as the full-length polypeptide).We observe that the peptide monomers in water mainly adopt non-structural coil configurations;the four peptides which are randomly placed in water aggregate spontaneously to partially ordered oligomer(β-sheets)through dimerization or trimerization,with the dimerization predominated.Both parallel and anti-parallelβ-sheets are observed.The hydrophobic interactions drive the initial peptides associations,and the subsequent conformational fluctuations promote the formation of more hydrogen bonds between the dangling hydrogen sites in the main chains of peptides.展开更多
基金supported by Changwon National University in 2010,Korea
文摘The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated through the calculation of the Hertzian contact stress.Based on the above results and the sliding velocity between the rotors,a genetic algorithm (GA) was used as an optimization technique forminimizing the wear rate proportional factor (WRPF).The result shows that the wear rate or the WRPF can be reduced considerably,e.g.approximately 12.8%,throughout the optimization using GA.
基金Supported by the Portuguese Foundation for Science and Technology under Grant No.PTDC/ECM/100686/2008
文摘A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid boundaries including the seabed. A peculiarity of the proposed implementation is the application of the so-called "moving-patch" method for simulating steady boundaries of large extensions. The method is based on an assumption that at any moment just the part of the boundary ("moving patch") which lies close to the interacting ship is significant for the near-field interaction. For a specific case of the fiat bottom, comparative computations were performed to determine optimal dimensions of the patch and of the constituting panels based on the trade-off between acceptable accuracy and reasonable efficiency. The method was applied to estimate the sway force on a ship hull moving obliquely across a dredged channel. The method was validated for a case of ship-to-ship interaction when tank data were available. This study also contains a description of a newly developed spline approximation algorithm necessary for creating consistent discretizations of ship hulls with various degrees of refinement.
基金Project 2002CB211705 supported by the National Basic Research Program of China
文摘In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the effect of hydrodynamic forces controlling CBM reservoir formations was studied by a physical simulation experiment in which we used CBM reservoir simulation facilities. The hydrodynamic conditions of high coal rank reservoirs in the Qinshui basin were analyzed. Our experiment shows the following results: under strong hydrodynamic alternating action, 6C~ of coalbed methane reservoir changed from the start at -2.95% ~ -3.66%, and the lightening process occurred in phases; the CI-I4 volume reduced from 96.35% to 12.42%; the CO2 vo- lume decreased from 0.75% in sample 1 to 0.68% in sample 2, then rose to 1.13% in sample 3; the N2 volume changed from 2.9% in sample 1 to 86.45% in sample 3. On one hand, these changes show the complexity of CBM reservoir formation; on the other hand, they indicate that strong hydrodynamic actions have an unfavorable impact on CBM reservoir formation. It was found that the gas volume and hydrodynamic intensity were negatively correlated and low hydrodynamic flow conditions might result in highly productive and enriched areas of high rank CBM.
文摘Maximum rate of food consumption (C max) was determined for juvenile Sebastodes fuscescens (Houttuyn) at water temperature of 10, 15, 20 and 25℃. The relationships of C max to the body weight (W) at each temperature were described by a power equation: lnC max = a + b lnW. Covariance analysis revealed significant interaction of the temperature and body weight. The relationship of adjusted C max to water temperature (T) was described by a quadratic equation: C max =-0.369 + 0.456T - 0.0117T 2. The optimal feeding temperature calculated from this equation was 19.5℃. The coefficients of the multiple regression estimation relating C max to body weight (W) and water temperature (T) were given in the Table 2.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘To predict the flow evolution of fish swimming problems,a flow solver based on the immersed boundary lattice Boltzmann method is developed.A flexible iterative algorithm based on the framework of implicit boundary force correction is used to save the computational cost and memory,and the momentum forcing is described by a simple direct force formula without complicated integral calculation when the velocity correction at the boundary node is determined.With the presented flow solver,the hydrodynamic interaction between the fish-induced dynamic stall vortices and the incoming vortices in unsteady flow is analyzed.Numerical simulation results unveil the mechanism of fish exploiting vortices to enhance their own hydrodynamic performances.The superior swimming performances originate from the relative movement between the“merged vortex”and the locomotion of the fishtail,which is controlled by the phase difference.Formation conditions of the“merged vortex”become the key factor for fish to exploit vortices to improve their swimming performance.We further discuss the effect of the principal components of locomotion.From the results,we conclude that lateral translation plays a crucial role in propulsion while body undulation in tandem with rotation and head motion reduce the locomotor cost.
文摘Dam breaks are easily triggered by heavy rains due to extreme weather such as typhoons,causing serious economic losses and casualties.Through the investigation of Chaoshan coastal zone,it is found that there have been dam breaks caused by geological disasters.In the design and management of water conservancy project,it is very important to analyze the effect of disastrous flow caused by dam break on the building.In this paper,the effect of the dam break flow on the cylinder is simulated numerically by taking the water body with initial velocity as the dam break flow,and the flow characteristics around the cylinder and the water body are analyzed.Numerical model adopted the Renault Average Navier-Stokes(RANS)model and volume of fluid(VOF)method to analyze the evolution of free water surface.It is found that there are different patterns of water movement in the process of dam break resulting in the creation of several isolated convex hull forms of dam-break waves on the stationary water surface,which causes longer disturbances in the water near the cylinder and makes the cylinder more vulnerable to fatigue damage.The increase of the height of the dam breaking water will lead to the increase of the hydrodynamic force on the pipeline.This study has guiding significance for the study of dam break and dam body design in water conservancy projects.
基金support of JASSO to conduct this research work during the author’s stay at Japan
文摘Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.
基金Supported by the National Natural Science Foundation of China under Grant No.50879014
文摘The motion of the fins and control surfaces of underwater vehicles in a fluid is an interesting and challenging research subject.Typically the effect of fin oscillations on the fluid flow around such a body is highly unsteady, generating vortices and requiring detailed analysis of fluid-structure interactions.An understanding of the complexities of such flows is of interest to engineers developing vehicles capable of high dynamic performance in their propulsion and maneuvering.In the present study, a CFD based RANS simulation of a 3-D fin body moving in a viscous fluid was developed.It investigated hydrodynamic performance by evaluating the hydrodynamic coefficients (lift, drag and moment) at two different oscillating frequencies.A parametric analysis of the factors that affect the hydrodynamic performance of the fin body was done, along with a comparison of results from experiments.The results of the simulation were found in close agreement with experimental results and this validated the simulation as an effective tool for evaluation of the unsteady hydrodynamic coefficients of 3-D fins.This work can be further be used for analysis of the stability and maneuverability of fin actuated underwater vehicles.
文摘Dynamic effects of NO2--N accumulation were discussed owing to temperature.In different temperature,a series of vmax and Ks were found considering the relation between the temperature and rate of ammonia nitrogen transforming into NO2--N.The kinetics models,which reflected the conditions of ammonia nitrogen transforming into NO2--N in the treatment process of the coking wastewater,were built up.The characteristic coefficient temperature was determined according to Arrhenius.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50805130, 50775206)the Zhejiang Nature Science Foundation of China (Grant Nos. Y1090620, R1090833)+1 种基金the Tribology Science Fund of State Key Laboratory of Tribology of China (Grant No. SKLTKF08B01)the Program of Young Leaders and Core Instructors of Disciplines in Science of Zhejiang University of Technology (Grant No. 102004829)
文摘The orientation of the dimple increases the flow distance in the dimple and produces fluid cumulative effect in the dimple length direction, which leads to obvious hydrodynamic effect as a result. In order to investigate the hydrodynamic effect of orientation dimples, a series of experiments was carried out on a ring-on-ring test. Multi-pored faces were tested with different dimple inclination angles and slender ratios. Film thickness and frictional torque were measured under different conditions of load and rotation speed. Experimental results showed that the orientation dimple could produce obvious dynamic effect by change of the flow direction and the increasing dimple orientation leads to increase of the load capability. The hydrodynamic effect strongly depends on dimple orientation parameters such as inclination angle and slender ratio. A larger load capability can be available by increasing dimple orientation and rotation speed. Experimental results agreed well with the theory that orientation micro-pores can significantly improve hydrodynamic performance of surfaces.
基金support of the National Natural Science Foundation of China(20674093)
文摘The Gay-Berne (GB) model has been proved to be highly successful in the simulation of liquid crystal phases via both molec- ular dynamics (MD) and nonequilibrium molecular dynamics (NEMD). However, the conventional thermostats used in the simulations of GB systems, such as Nose-Hoover and Langevin thermostats, have serious shortcomings especially in NEMD simulations. Recently, dissipative particle dynamics (DPD) has established itself as a useful thermostat for soft matter simulations, whereas the application of DPD thermostat in (NE)MD simulations is limited to the spherically isotropic potential models, such as the Lennard-Jones model. Considering the virtues of the DPD thermostat, that is, local, momentum conserved, and Galilean invariant, we extend the DPD thermostat to the non-spherical GB model. It is interesting to find that the translational DPD and rotational DPD thermostats can be used in the GB system independently and both can achieve the thermostatting effects. Also, we compared the performance of the DPD thermostat with other commonly used thermostats in NEMD simulations by investigating the streaming velocity profiles and the dynamics of phase separation in a typical but simple binary GB mixture under shear field. It is revealed that the known virtues of DPD thermostats, such as Galilean invariant, shear velocity profile-unbiased, and unscreened hydrodynamic interactions, are still intact when applying to GB systems. Finally, the appro- priate parameters for the DPD thermostat in the GB system are identified for future investigations.
基金supported by the Science Foundation of Science and Technology Commission of Shanghai Municipality(Grant No.11ZR1417800)the National Natural Science Foundation of China(Grant No.50879045)the LRET(Lloyds Register Educational Trust) to the joint centre involving University College London,Shanghai Jiao Tong University and Harbin Engineering University
文摘The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas(FLNG) system,which is a new type of floating LNG(Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants.In particular,this study focuses on the investigation of the roll response of FLNG hull in free-decay motions,white noise waves and also in irregular waves.Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out.Response Amplitude Operators(RAOs) and time histories of the responses are obtained for sway,roll and yaw motions.Obvious Low Frequency(LF) components of the roll motions are observed,which may be out of expectation.To facilitate the physical understanding of this phenomenon,we filter the roll motions at the period of 30 s into two parts:the Wave Frequency(WF) motions and the Low Frequency(LF) motions respectively.The results indicate that the LF motions are closely related to the sway and yaw motions.Possible reasons for the presence of the LF motions of roll have been discussed in detail,through the comparison with the sway and yaw motions.As for the numerical part,the simulation of the modeled case is conducted with the help of the software SESAM.A good agreement between experiments and calculations is reported within the scope of trends.However,the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50739004, 51009093)the Research Fund for the Shandong Province Key Laboratory of Ocean Engineering
文摘Steel lazy wave catenary riser (SLWR) has been an attractive choice for deepwater oil field developments. However, fatigue is a critical issue in assessing the feasibility of applying SLWR to large motion vessels such as floating production storage and offloading (FPSO) or semi-submersibles. In this work, the time-domain fatigue analysis of SLWR was adopted for better representing the structural nonlinearity, fluid load nonlinearity and riser-soil nonlinear interaction. The Palmgren-Miner rule was employed for the fatigue life prediction along the riser length. The main purpose of this analysis is to present sensitivity analyses of SLWR fatigue life under various input parameters, which include the structural damping, the hydrodynamic coefficients along the riser, the seabed stiffness, the vessel motions, etc. The analyses indicated the strong dependence of the riser fatigue life on these parameters. The results can help designers to understand the dynamic behavior of the SLWR and provide guidance for selection of some critical parameters that are used in the fatigue design.
基金supported by the Fundamental Research Funds for the Central Universities(2017YJS168)
文摘A simultaneous visualization and measurement experiment was carried out to investigate condensation flow pat- terns and condensing heat transfer characteristics of refrigerant R14 lb in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 ram. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal mul- ti-channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were per- formed at different inlet superheat temperatures (ranging from 3~C to 7~C). Mass velocity was in the range of 82.37 kg mZs1 to 35.56 kg m-2s1. It was found that there were three different flow patterns through the mul- ti-channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows.' The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.
基金supported by the National Basic Research Program of China(2012CB821500 and 2010CB631102)the National Natural Science Foundation of China(21274153)+1 种基金the support of the National Natural Science Foundation of China(21120102037)Computing Center of Jilin Province for essential support
文摘The diffusion behavior of polyelectrolytes in dilute salt-free solution is studied through a hybrid mesoscale simulation technique that combines the molecular dynamics method and the multiparticle collision dynamics approach.To elucidate the effects of hydrodynamic interactions(HI),we compare results for hydrodynamic and random solvents.When HI are taken into account,we find that the chain diffusivity decreases initially and then increases gradually with the increasing strength of the Coulomb interaction.By contrast,when HI are switched off,the electrostatic-dependent diffusivity shows three distinct regions,and a plateau of approximately constant diffusivity manifests between two decreasing regions.The findings reveal that the dynamics of polyelectrolytes in dilute solution depend on the coupling effects of hydrodynamic and Coulomb interactions,and that these dynamics can be understood by considering the conformational changes of chains,the counterion condensation,and the dynamics of counterions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.30870593 and 11204269the China Postdoctoral Science Foundation under Grant No.2012M511351+2 种基金Zhejiang Provincial Natural Science Foundation of China under Grant No.LY12A04007the Fundamental Research Funds for the Central Universitiesthe KYLIN-I Supercomputer in Institute for Fusion Theory and Simulation,Zhejiang University
文摘Peptides/proteins aggregation can give rise to pathological conditions of many human diseases.Small partially ordered oligomers formed in the early stage of aggregation,rather than mature fibrils,are thought to be the main toxicity agent for the living cell.Thus,understanding the pathway and the underlying physical mechanism in the early stage of aggregation is very important for prevention and treatment of these protein functional diseases.Herein we use all-atom molecular dynamics simulations to study the aggregation of four NFGAIL hexapeptides(NFGAIL peptide is a core segment of human islet amyloid polypeptide and exhibits similar aggregation kinetics as the full-length polypeptide).We observe that the peptide monomers in water mainly adopt non-structural coil configurations;the four peptides which are randomly placed in water aggregate spontaneously to partially ordered oligomer(β-sheets)through dimerization or trimerization,with the dimerization predominated.Both parallel and anti-parallelβ-sheets are observed.The hydrophobic interactions drive the initial peptides associations,and the subsequent conformational fluctuations promote the formation of more hydrogen bonds between the dangling hydrogen sites in the main chains of peptides.