A simple, rapid and sensitive flow injection chemiluminescence (FI-CL) method has been developed for the determination of meloxicam. The method is based on the CL-emitting reaction between meloxicam and potassium pe...A simple, rapid and sensitive flow injection chemiluminescence (FI-CL) method has been developed for the determination of meloxicam. The method is based on the CL-emitting reaction between meloxicam and potassium permanganate in a hydrochloric acid medium, enhanced by formaldehyde (HCHO). Under optimum conditions, calibration curve over the range of 1.0-20.0μg/mL was obtained. The proposed method was successfully applied to the determination of meloxicam in capsules with no evi- dence of interference from common excipients. The detection limit of this method was 25.6 ng/mL. The relative standard deviation was 2.1% for 10.0 μg/mL meloxicam. The sample throughput was found to be 120 samples/h.展开更多
EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a fact...EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a factor of 160 by addition of EDTA to the luminol solution. Fe 2+ and Fe 3+ were determined simultaneously with a novel copper-coated zinc reductor minicolumn installed in one of the shunt after sample splitting in the manifold. The reductor minicolumn can be used for 3000 determinations at least. The dynamic range of determination was 1×10 -9 ~1×10 -5 mol·L -1 , with the limit of detection of 2.7×10 10 and 3.5×10 10 mol·L 1 ,for Fe 2+ and Fe 3+ , respectively. The preci sion for determination of 2×10 7 mol·L 1 of Fe 2+ and Fe 3+ was 2.3% and 4.0% (n=8), respectively, at a sampling rate of 60 h -1 . Cr 3+ and Co 2+ interfere. Fe 2+ and Fe 3+ in mixture were determined with satisfactory results. Samples of Fe 2+ and Fe 3+ were determined simultaneously and the results in good agreement with the standard spectrophotometric method. Indications were shown that EDTA functions as an enhancer, Fe 2+ as a catalyst, and oxygen is the oxidant of the chemiluminescent reaction, and the mechanism of the reaction was discussed.展开更多
Differential electrolytic potentiometry (DEP) was coupled with Flow injection analysis (FIA) technique for the determination of Procainamide in pharmaceutical preparations. Platinum electrodes were used as an indi...Differential electrolytic potentiometry (DEP) was coupled with Flow injection analysis (FIA) technique for the determination of Procainamide in pharmaceutical preparations. Platinum electrodes were used as an indicating system to follow the oxidation of Procainamide with cerium(IV), and permanganate in an acidic medium. The oxidation reactions of Procainamide with Ce(IV) and/or permanganate are fast enough to permit its determination by flow injection in sulfuric acid media. The univariate method was employed to optimize the variables such as the current density, the flow rate, the oxidant concentration and the concentration of sulfuric acid. The proposed method was linear in the range 20-100 μg.mL^-1 , the DL and R2 values were 12 μg.mL^-1 and 0.995 respectively. The procedure was applied successfully to the determination of Procainamide in commercial tablets. The results of this study were favorably compared statistically with those obtained with official methods.展开更多
Screen printing is a promising technology because of its simplicity, low-cost, high reproducibility, and efficiency in large-scale production. In this work, a cobalt-based phosphate sensor was successfully fabricated ...Screen printing is a promising technology because of its simplicity, low-cost, high reproducibility, and efficiency in large-scale production. In this work, a cobalt-based phosphate sensor was successfully fabricated using the screen printing technology for the determination of phosphate concentration in the aqueous solution. The disposable sensor consists of a fully integrated cobalt (Co) electrode, which is a layer of carbon conductive ink (C) physically doped with Co powder, and Ag/AgCI reference electrode. The SEM images show that the morphology of the Co electrode changes after exposure to the phosphate solution, indicating that the expendable reaction exists during the measurement. At the Co/C ratio of 1:99, the cobalt-based phosphate sensor shows phosphate-selective potential response in the range of 10-4 to 10-1 mol/L, yielding a detection limit of lxl0-5 mol/L and a slope of over 30 mV/decade in acidic solution (pH 4.5) for HzPO4-. The proposed screen-printed sensor also ex- hibited significant reproducibility with a small repeated sensing deviation (i.e., relative standard deviation (R.S.D.) of 0.5%) on a single sensor and a small electrode-to-electrode deviation (i.e., R.S.D. 〈 3.2%). The recovery study of HzPO4- in real wastewater samples gave values from 95.4% to 101.8%, confirming its application potential in the measurement of phosphate in real samples. Apart from its high selectivity, sensitivity, and stability comparable with a conventional bulk Co-wire electrode, the proposed phosphate sensor still yields many other advantages, such as low price, compactness, ease of use, and the possibility of integration with other analytical devices such as flow injection analysis.展开更多
Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver fail- ure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily in...Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver fail- ure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily intravenous drug misuse on the transmission dynamics of HCV is presented and analyzed. A threshold quantity known as the reproductive number has been computed. Stability of the steady states has been investigated. The dynamical analysis reveals that the model has globally asymptotically stable steady states. The impact of daily intravenous drug misuse on the transmission dynamics of HCV has been discussed through the basic reproductive number and numerical simulations.展开更多
文摘A simple, rapid and sensitive flow injection chemiluminescence (FI-CL) method has been developed for the determination of meloxicam. The method is based on the CL-emitting reaction between meloxicam and potassium permanganate in a hydrochloric acid medium, enhanced by formaldehyde (HCHO). Under optimum conditions, calibration curve over the range of 1.0-20.0μg/mL was obtained. The proposed method was successfully applied to the determination of meloxicam in capsules with no evi- dence of interference from common excipients. The detection limit of this method was 25.6 ng/mL. The relative standard deviation was 2.1% for 10.0 μg/mL meloxicam. The sample throughput was found to be 120 samples/h.
文摘EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a factor of 160 by addition of EDTA to the luminol solution. Fe 2+ and Fe 3+ were determined simultaneously with a novel copper-coated zinc reductor minicolumn installed in one of the shunt after sample splitting in the manifold. The reductor minicolumn can be used for 3000 determinations at least. The dynamic range of determination was 1×10 -9 ~1×10 -5 mol·L -1 , with the limit of detection of 2.7×10 10 and 3.5×10 10 mol·L 1 ,for Fe 2+ and Fe 3+ , respectively. The preci sion for determination of 2×10 7 mol·L 1 of Fe 2+ and Fe 3+ was 2.3% and 4.0% (n=8), respectively, at a sampling rate of 60 h -1 . Cr 3+ and Co 2+ interfere. Fe 2+ and Fe 3+ in mixture were determined with satisfactory results. Samples of Fe 2+ and Fe 3+ were determined simultaneously and the results in good agreement with the standard spectrophotometric method. Indications were shown that EDTA functions as an enhancer, Fe 2+ as a catalyst, and oxygen is the oxidant of the chemiluminescent reaction, and the mechanism of the reaction was discussed.
文摘Differential electrolytic potentiometry (DEP) was coupled with Flow injection analysis (FIA) technique for the determination of Procainamide in pharmaceutical preparations. Platinum electrodes were used as an indicating system to follow the oxidation of Procainamide with cerium(IV), and permanganate in an acidic medium. The oxidation reactions of Procainamide with Ce(IV) and/or permanganate are fast enough to permit its determination by flow injection in sulfuric acid media. The univariate method was employed to optimize the variables such as the current density, the flow rate, the oxidant concentration and the concentration of sulfuric acid. The proposed method was linear in the range 20-100 μg.mL^-1 , the DL and R2 values were 12 μg.mL^-1 and 0.995 respectively. The procedure was applied successfully to the determination of Procainamide in commercial tablets. The results of this study were favorably compared statistically with those obtained with official methods.
基金supported by the Major Scientific Equipment Development Project of China(2012YQ030111)the Beijing Natural Science Foundation(8132032)
文摘Screen printing is a promising technology because of its simplicity, low-cost, high reproducibility, and efficiency in large-scale production. In this work, a cobalt-based phosphate sensor was successfully fabricated using the screen printing technology for the determination of phosphate concentration in the aqueous solution. The disposable sensor consists of a fully integrated cobalt (Co) electrode, which is a layer of carbon conductive ink (C) physically doped with Co powder, and Ag/AgCI reference electrode. The SEM images show that the morphology of the Co electrode changes after exposure to the phosphate solution, indicating that the expendable reaction exists during the measurement. At the Co/C ratio of 1:99, the cobalt-based phosphate sensor shows phosphate-selective potential response in the range of 10-4 to 10-1 mol/L, yielding a detection limit of lxl0-5 mol/L and a slope of over 30 mV/decade in acidic solution (pH 4.5) for HzPO4-. The proposed screen-printed sensor also ex- hibited significant reproducibility with a small repeated sensing deviation (i.e., relative standard deviation (R.S.D.) of 0.5%) on a single sensor and a small electrode-to-electrode deviation (i.e., R.S.D. 〈 3.2%). The recovery study of HzPO4- in real wastewater samples gave values from 95.4% to 101.8%, confirming its application potential in the measurement of phosphate in real samples. Apart from its high selectivity, sensitivity, and stability comparable with a conventional bulk Co-wire electrode, the proposed phosphate sensor still yields many other advantages, such as low price, compactness, ease of use, and the possibility of integration with other analytical devices such as flow injection analysis.
文摘Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver fail- ure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily intravenous drug misuse on the transmission dynamics of HCV is presented and analyzed. A threshold quantity known as the reproductive number has been computed. Stability of the steady states has been investigated. The dynamical analysis reveals that the model has globally asymptotically stable steady states. The impact of daily intravenous drug misuse on the transmission dynamics of HCV has been discussed through the basic reproductive number and numerical simulations.