Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity ...Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.展开更多
Ground Penetrating Radar method was used in detecting the flaws of underground pipeline. The GPR layer disturbing image was summarized by using a rational method in fieldwork and the in-door interpretation of data. Th...Ground Penetrating Radar method was used in detecting the flaws of underground pipeline. The GPR layer disturbing image was summarized by using a rational method in fieldwork and the in-door interpretation of data. The mark radar images of disturbance of slight, middle, and strong were obtained. The result shows that the radar method can not only determine the position of the concrete pipeline underground, but it can detect the laying quality of pipeline as well.展开更多
A new light nuclear reaction model has been developed and the double-differential measurements of lp shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-ld she...A new light nuclear reaction model has been developed and the double-differential measurements of lp shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-ld shell nucleus. The double-differential cross section of total outgoing neutron for n +^19F reactions at En=14.2 MeV has been calculated and analyzed, which agrees fairly well with the experimental measurements. In this paper, the contributions from different reaction channels to the double-differential cross sections have been analyzed in detail. The calculations indicate that this light nudear reaction model is also able to be used for the 2s-ld shell nucleus so long as the related level scheme couM be provided sufficiently.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40771026)the NSFC-RFBR project (Grant No. 40911120089, 08-05-92206 NSFCa)
文摘Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.
文摘Ground Penetrating Radar method was used in detecting the flaws of underground pipeline. The GPR layer disturbing image was summarized by using a rational method in fieldwork and the in-door interpretation of data. The mark radar images of disturbance of slight, middle, and strong were obtained. The result shows that the radar method can not only determine the position of the concrete pipeline underground, but it can detect the laying quality of pipeline as well.
基金The project supported by National Natural Science Foundation of China under Grant No. 10547005
文摘A new light nuclear reaction model has been developed and the double-differential measurements of lp shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-ld shell nucleus. The double-differential cross section of total outgoing neutron for n +^19F reactions at En=14.2 MeV has been calculated and analyzed, which agrees fairly well with the experimental measurements. In this paper, the contributions from different reaction channels to the double-differential cross sections have been analyzed in detail. The calculations indicate that this light nudear reaction model is also able to be used for the 2s-ld shell nucleus so long as the related level scheme couM be provided sufficiently.