Speckle interferometry is an efficient method to analyze a vibration. In certain conditions, this technique has some outstanding advantage, and need not strict shock--proof condition, compared with the holographic met...Speckle interferometry is an efficient method to analyze a vibration. In certain conditions, this technique has some outstanding advantage, and need not strict shock--proof condition, compared with the holographic method for measuring vibration. Therefore,it is suitable to analyze a vibration with a large amplitude.Real-time interferometry is a rapid and simple method for measuring vibration of a body, gives speckle pattern containing amplitude distribution of body-surface. By means of time-averaged method, the speckle pattern is recorded in Fourier transform plane, or vibration lines are seen directly with eyes, so as to analyze efficiently amplitude, phase, and model of a vibration. This paper deduces the intensity distribution function with real-time method, and gives experimental demonstration of vibration body-the vibration lines with different frequencies.展开更多
The analysis of strata between wells is fundamental in the study of oil and gas reservoirs. Automatic analysis of strata between wells, based on stratigraphic division of well logs, is realized using computer techniqu...The analysis of strata between wells is fundamental in the study of oil and gas reservoirs. Automatic analysis of strata between wells, based on stratigraphic division of well logs, is realized using computer techniques. We use a technique of dynamic waveform matching to build cross-well stratigraphic correlation relationships and automatically draw a path diagram of the cross-well stratigraphic contrast through piecewise line fitting, log character extraction, match cost calculation, and etc.. After analyzing many structure path diagrams between wells, 30 path patterns for normal faults, reverse faults, unconformities, synsedimentary faults, listric faults, pinch-outs, and so on were summarized and the path diagram patterns and correlation conceptions are presented. The application analysis in Dagang Oil Field shows that this method is effective.展开更多
A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one...A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.展开更多
This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of...This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of the pipe(8%,10%,16% and 25%).Experiments were done to test the important parameters in solid transport(pressure,velocity,etc.).As a result,the relationship between the pressure gradient forces and the mixture velocity was substantially different from the pure liquid flow.However,in a single-phase flow a monotonous behavior of the pressure drop curve is observed,and the curve of the solid particle flow attains its minimum at the critical velocity.The regimes are characterized with differential pressure measurements and visualizations.展开更多
In order to understand the laws of motion for supercavitating vehicle better, simplified equations for longitudinal motion of supercavitating vehicle were derived. Then the corresponding simulation software for trajec...In order to understand the laws of motion for supercavitating vehicle better, simplified equations for longitudinal motion of supercavitating vehicle were derived. Then the corresponding simulation software for trajectory of supereavitating vehicle was programmed, by which the theoretical predicted trajectories of the supercavitating vehicle at different velocities were obtained. It was found that the predicted trajectories at low speed and without cavitation on the vehicle in theory agreed well with those in experiments, and the theoretical predicted trajectories at high speed and with supercavity on the vehicle correctly reflected the motion laws of the supercavitating vehicle. The influences of various parameters of eavitator and rudder on the underwater trajectory were compared and analyzed, which can provide a guide for the design of hydrodynamic distribution and gross parameters of the supereavitating weapons.展开更多
Three kinds of methods for processing the data of the multi-wavelength pyrometer are presented in this paper and are named curve auto-search method, curve auto-regression method and neural network method. Tbe experime...Three kinds of methods for processing the data of the multi-wavelength pyrometer are presented in this paper and are named curve auto-search method, curve auto-regression method and neural network method. Tbe experimental results indicate that the calculated temperature and the spectral emissivity compared with the true target temperature and spectral emissivity have significant deviation using the curve auto-search and the curve auto-regression methods. However, the calculated temperature and the spectral emissivity with higher accuracy can be obtained using the neural network method.展开更多
文摘Speckle interferometry is an efficient method to analyze a vibration. In certain conditions, this technique has some outstanding advantage, and need not strict shock--proof condition, compared with the holographic method for measuring vibration. Therefore,it is suitable to analyze a vibration with a large amplitude.Real-time interferometry is a rapid and simple method for measuring vibration of a body, gives speckle pattern containing amplitude distribution of body-surface. By means of time-averaged method, the speckle pattern is recorded in Fourier transform plane, or vibration lines are seen directly with eyes, so as to analyze efficiently amplitude, phase, and model of a vibration. This paper deduces the intensity distribution function with real-time method, and gives experimental demonstration of vibration body-the vibration lines with different frequencies.
基金This work is sponsored by the Major Program in the Ninth-five Year Plan, National Natural Science Foundation of China (No.498894190 - 4).
文摘The analysis of strata between wells is fundamental in the study of oil and gas reservoirs. Automatic analysis of strata between wells, based on stratigraphic division of well logs, is realized using computer techniques. We use a technique of dynamic waveform matching to build cross-well stratigraphic correlation relationships and automatically draw a path diagram of the cross-well stratigraphic contrast through piecewise line fitting, log character extraction, match cost calculation, and etc.. After analyzing many structure path diagrams between wells, 30 path patterns for normal faults, reverse faults, unconformities, synsedimentary faults, listric faults, pinch-outs, and so on were summarized and the path diagram patterns and correlation conceptions are presented. The application analysis in Dagang Oil Field shows that this method is effective.
基金partially supported by the University of Salerno (Italy) through the Civil and Environmental Engineering Ph.D. programme and FARB research funding
文摘A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.
基金the Dyn Fluid Laboratory at Arts et Métiers Paris Tech
文摘This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of the pipe(8%,10%,16% and 25%).Experiments were done to test the important parameters in solid transport(pressure,velocity,etc.).As a result,the relationship between the pressure gradient forces and the mixture velocity was substantially different from the pure liquid flow.However,in a single-phase flow a monotonous behavior of the pressure drop curve is observed,and the curve of the solid particle flow attains its minimum at the critical velocity.The regimes are characterized with differential pressure measurements and visualizations.
文摘In order to understand the laws of motion for supercavitating vehicle better, simplified equations for longitudinal motion of supercavitating vehicle were derived. Then the corresponding simulation software for trajectory of supereavitating vehicle was programmed, by which the theoretical predicted trajectories of the supercavitating vehicle at different velocities were obtained. It was found that the predicted trajectories at low speed and without cavitation on the vehicle in theory agreed well with those in experiments, and the theoretical predicted trajectories at high speed and with supercavity on the vehicle correctly reflected the motion laws of the supercavitating vehicle. The influences of various parameters of eavitator and rudder on the underwater trajectory were compared and analyzed, which can provide a guide for the design of hydrodynamic distribution and gross parameters of the supereavitating weapons.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60377037)the Scientific Research Foundation of Harbin Institute of Technol-ogy (Grant No. HIT. 2002. 18)the Spaceflight Support Foundation.
文摘Three kinds of methods for processing the data of the multi-wavelength pyrometer are presented in this paper and are named curve auto-search method, curve auto-regression method and neural network method. Tbe experimental results indicate that the calculated temperature and the spectral emissivity compared with the true target temperature and spectral emissivity have significant deviation using the curve auto-search and the curve auto-regression methods. However, the calculated temperature and the spectral emissivity with higher accuracy can be obtained using the neural network method.