The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of cap...The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost.展开更多
In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions ...In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.展开更多
To investigate the validity of two dynamic modulus predictive models( Witczak 1-37 A viscosity-based model and Witczak 1-40 D shear modulus-based model) in the context of Jiangsu, and evaluate the effect of differen...To investigate the validity of two dynamic modulus predictive models( Witczak 1-37 A viscosity-based model and Witczak 1-40 D shear modulus-based model) in the context of Jiangsu, and evaluate the effect of different mixture design variables( aggregate gradations, binder type, and volumetric properties) on dynamic modulus E*, asphalt mixtures commonly used in the local surface layer, including Sup-13 and AC-13, are prepared in the laboratory and their dynamic modulus E*values are predicted based on the above mentioned models. The corresponding asphalt tests, including viscosity and dynamic shear modulus tests, are also carried out to obtain the prediction model parameters. The test results showthat binder type and asphalt content have a significant impact on dynamic modulus.There is a good correlation between the E*values based on above two predictive models and the measured E*, while a relatively lower bias can be expected from Witczak 1-37 A model. The test results can be used for the calibration of dynamic modulus with higher accuracy.展开更多
Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain ...Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain rate of 0.001?1 s?1. The results show that deformation mechanism of this alloy in hot deformation is dominated by DRX, and new grains of DRX are evolved by bulging nucleation mechanism as a predominant mechanism. DRX occurs more easily with the decrease of strain rate and the increase of deformation temperature. Grain refinement is achieved due to DRX during the hot deformation at strain rate range of 0.01?0.1 s?1 and temperature range of 950?1050 °C. DRX grain coarsening is observed for the alloy deformed at the higher temperatures of 1100 °C and the lower strain rates of 0.001 s?1. Finally, in order to determine the recrystallized fraction and DRX grain size under different deformation conditions, the prediction models of recrystallization kinetics and recrystallized grain sizes were established.展开更多
The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had h...The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had high precision, and they could be used for the updating data of inventory of planning and designing and optimal decision of forest management.展开更多
Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated ...Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated in three cases:1)Parameters of the MLP,the limb geometry and dynamic model match completely,2)Parameters mismatch between them,and 3)Disturbance exists.The results show that parameters mismatch is the main error source,which causes the elbow joint movement to be aberrant.From this we can infer that movement study is a process in which the internal model is updated continuously to match the geometry and dynamic model of limb.展开更多
Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study o...Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.展开更多
This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is intro...This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.展开更多
To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used a...To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications.展开更多
Model Predictive Control (MPC) is a popular technique and has been successfully used in various industrial applications. However, the big drawback of MPC involved in the formidable on line computational effort limits ...Model Predictive Control (MPC) is a popular technique and has been successfully used in various industrial applications. However, the big drawback of MPC involved in the formidable on line computational effort limits its applicability to relatively slow and/or small processes with a moderate number of inputs. This paper develops an aggregation optimization strategy for MPC that can improve the computational efficiency of MPC. For the regulation problem, an input decaying aggregation optimization algorithm is presented by aggregating all the original optimized variables on control horizon with the decaying sequence in respect of the current control action.展开更多
The boreal spring Antarctic Oscillation(AAO)has a significant impact on the spring and summer climate in China.This study evaluates the capability of the NCEP's Climate Forecast System,version 2(CFSv2),in predicti...The boreal spring Antarctic Oscillation(AAO)has a significant impact on the spring and summer climate in China.This study evaluates the capability of the NCEP's Climate Forecast System,version 2(CFSv2),in predicting the boreal spring AAO for the period 1983-2015.The results indicate that CFSv2 has poor skill in predicting the spring AAO,failing to predict the zonally symmetric spatial pattern of the AAO,with an insignificant correlation of 0.02 between the predicted and observed AAO Index(AAOI).Considering the interannual increment approach can amplify the prediction signals,we firstly establish a dynamical-statistical model to improve the interannual increment of the AAOI(DY AAOI),with two predictors of CFSv2-forecasted concurrent spring sea surface temperatures and observed preceding autumn sea ice.This dynamical-statistical model demonstrates good capability in predicting DY AAOI,with a significant correlation coeffcient of 0.58 between the observation and prediction during 1983-2015 in the two-year-out cross-validation.Then,we obtain an improved AAOI by adding the improved DY AAOI to the preceding observed AAOI.The improved AAOI shows a significant correlation coeffcient of 0.45 with the observed AAOI during 1983-2015.Moreover,the unrealistic atmospheric response to March-April-May sea ice in CFSv2 may be the possible cause for the failure of CFSv2 to predict the AAO.This study gives new clues regarding AAO prediction and short-term climate prediction.展开更多
The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity...The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.展开更多
In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and time...In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.展开更多
The goaf may face a series of deformation and settlement problems when the room-pillar mining method is used to excavate ore and pillars in the deep strata.To this end,a deep room-pillar model with two levels was made...The goaf may face a series of deformation and settlement problems when the room-pillar mining method is used to excavate ore and pillars in the deep strata.To this end,a deep room-pillar model with two levels was made,and the pillar recovery was carried out.The instantaneous deformation responses during the pillars recovery and the long-term settlements after the pillar recovery were analyzed.During the pillar recovery,different regions of surrounding rocks suffer from different dynamic disturbances which can be divided into three types,including(I)the combined action of blasting disturbance and unloading disturbance,(II)the sequential action of blasting disturbance and unloading disturbance,and(III)the action of unloading disturbance.After the pillar recovery,the settlement above the first recovering pillar is the largest,which has a traction effect on the settlement in other areas.The settlement process can be divided into two stages,stable displacement stage and unstable displacement stage.When the pillar-room system undergoes the unstable displacement stage,rock spalling and further cascading collapse will occur.展开更多
Objective: To investigate the urinary soy isoflavone metabolites from women, female piglets and rats fed with diet containing soy protein. Methods: Urinary samples from human and animals were collected after soy diet ...Objective: To investigate the urinary soy isoflavone metabolites from women, female piglets and rats fed with diet containing soy protein. Methods: Urinary samples from human and animals were collected after soy diet consumption. Identification for soy isoflavone metabolites in urine samples was processed using an Agilent Bruker LC Esquire ion trap system. Quantification of aglycone and conjugated soy isoflavone metabolites were also analyzed using a method published previously. Results: Identification studies showed that aglycones and conjugates of soy isoflavone metabolites were found in women and porcine samples. Interestingly, glucuronide conjugate of equol, besides glucuronide conjugates of genistein and daidzein, were found in rat urine. Glucuronide conjugate of equol was the major metabolite found in rat urine. A quantitative study showed that conjugated forms of isoflavones were more than 90% in woman urine, were between 80.5% and 84.5% in female porcine urine, and were less than 50% in female rat urine. Conclusion: Equol is the major metabolite found in female rat urine, but it is not found in woman or female porcine urine. Urinary profiles show that porcine model is more appropriate for mimicking human soy diet consuming studies.展开更多
Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultr...Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultrasonic vibration assisted grinding of brittle materials,the surface morphologies of grinding wheel were obtained firstly in the present work,the grinding wheel model was developed and the abrasive trajectories in ultrasonic vibration assisted grinding were also investigated,the theoretical model for surface roughness was developed based on the above analysis.The prediction model was developed by using Gaussian processing regression(GPR)due to the influence of brittle fracture on machined surface roughness.In order to validate both the proposed theoretical and GPR models,32sets of experiments of ultrasonic vibration assisted grinding of BK7optical glass were carried out.Experimental results show that the average relative errors of the theoretical model and GPR prediction model are13.11%and8.12%,respectively.The GPR prediction results can match well with the experimental results.展开更多
基金Projects(51204209,51274240)supported by the National Natural Science Foundation of ChinaProject(HNDLKJ[2012]001-1)supported by Henan Electric Power Science&Technology Supporting Program,China
文摘The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost.
基金The National Natural Science Foundation of China (No.61172135,61101198)the Aeronautical Foundation of China (No.20115152026)
文摘In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.
基金The Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120092110053)
文摘To investigate the validity of two dynamic modulus predictive models( Witczak 1-37 A viscosity-based model and Witczak 1-40 D shear modulus-based model) in the context of Jiangsu, and evaluate the effect of different mixture design variables( aggregate gradations, binder type, and volumetric properties) on dynamic modulus E*, asphalt mixtures commonly used in the local surface layer, including Sup-13 and AC-13, are prepared in the laboratory and their dynamic modulus E*values are predicted based on the above mentioned models. The corresponding asphalt tests, including viscosity and dynamic shear modulus tests, are also carried out to obtain the prediction model parameters. The test results showthat binder type and asphalt content have a significant impact on dynamic modulus.There is a good correlation between the E*values based on above two predictive models and the measured E*, while a relatively lower bias can be expected from Witczak 1-37 A model. The test results can be used for the calibration of dynamic modulus with higher accuracy.
基金Projects(51261020,51164030)supported by the National Natural Science Foundation of ChinaProject(GF201401007)supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,China
文摘Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain rate of 0.001?1 s?1. The results show that deformation mechanism of this alloy in hot deformation is dominated by DRX, and new grains of DRX are evolved by bulging nucleation mechanism as a predominant mechanism. DRX occurs more easily with the decrease of strain rate and the increase of deformation temperature. Grain refinement is achieved due to DRX during the hot deformation at strain rate range of 0.01?0.1 s?1 and temperature range of 950?1050 °C. DRX grain coarsening is observed for the alloy deformed at the higher temperatures of 1100 °C and the lower strain rates of 0.001 s?1. Finally, in order to determine the recrystallized fraction and DRX grain size under different deformation conditions, the prediction models of recrystallization kinetics and recrystallized grain sizes were established.
文摘The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had high precision, and they could be used for the updating data of inventory of planning and designing and optimal decision of forest management.
文摘Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated in three cases:1)Parameters of the MLP,the limb geometry and dynamic model match completely,2)Parameters mismatch between them,and 3)Disturbance exists.The results show that parameters mismatch is the main error source,which causes the elbow joint movement to be aberrant.From this we can infer that movement study is a process in which the internal model is updated continuously to match the geometry and dynamic model of limb.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant nos. 50639030 and 50979070) and the 863 Program of China (Grant no. 2006AA09Z348).
文摘Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.
基金Supported by the Shandong Natural Science Foundation(ZR2013BL008)
文摘This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.
基金Project(Kfkt2013-12)supported by Open Research Fund of Key Laboratory of High Performance Complex Manufacturing of Central South University,ChinaProject(2014002)supported by the Open Fund of Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,ChinaProject(51375013)supported by the National Natural Science Foundation of China
文摘To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications.
文摘Model Predictive Control (MPC) is a popular technique and has been successfully used in various industrial applications. However, the big drawback of MPC involved in the formidable on line computational effort limits its applicability to relatively slow and/or small processes with a moderate number of inputs. This paper develops an aggregation optimization strategy for MPC that can improve the computational efficiency of MPC. For the regulation problem, an input decaying aggregation optimization algorithm is presented by aggregating all the original optimized variables on control horizon with the decaying sequence in respect of the current control action.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600703)the funding of the Jiangsu Innovation & Entrepreneurship Team and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The boreal spring Antarctic Oscillation(AAO)has a significant impact on the spring and summer climate in China.This study evaluates the capability of the NCEP's Climate Forecast System,version 2(CFSv2),in predicting the boreal spring AAO for the period 1983-2015.The results indicate that CFSv2 has poor skill in predicting the spring AAO,failing to predict the zonally symmetric spatial pattern of the AAO,with an insignificant correlation of 0.02 between the predicted and observed AAO Index(AAOI).Considering the interannual increment approach can amplify the prediction signals,we firstly establish a dynamical-statistical model to improve the interannual increment of the AAOI(DY AAOI),with two predictors of CFSv2-forecasted concurrent spring sea surface temperatures and observed preceding autumn sea ice.This dynamical-statistical model demonstrates good capability in predicting DY AAOI,with a significant correlation coeffcient of 0.58 between the observation and prediction during 1983-2015 in the two-year-out cross-validation.Then,we obtain an improved AAOI by adding the improved DY AAOI to the preceding observed AAOI.The improved AAOI shows a significant correlation coeffcient of 0.45 with the observed AAOI during 1983-2015.Moreover,the unrealistic atmospheric response to March-April-May sea ice in CFSv2 may be the possible cause for the failure of CFSv2 to predict the AAO.This study gives new clues regarding AAO prediction and short-term climate prediction.
基金supported by National Natural Science Foundation of China(41474115,42174155)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)。
文摘The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.
基金supported by the Research and Innovation Program for College and University Graduate Students in Jiangsu Province (No.CX10B-141Z)the National Natural Science Foundation of China (No. 41071273)
文摘In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.
基金Projects(11972378,41630642)supported by the National Natural Science Foundation of China。
文摘The goaf may face a series of deformation and settlement problems when the room-pillar mining method is used to excavate ore and pillars in the deep strata.To this end,a deep room-pillar model with two levels was made,and the pillar recovery was carried out.The instantaneous deformation responses during the pillars recovery and the long-term settlements after the pillar recovery were analyzed.During the pillar recovery,different regions of surrounding rocks suffer from different dynamic disturbances which can be divided into three types,including(I)the combined action of blasting disturbance and unloading disturbance,(II)the sequential action of blasting disturbance and unloading disturbance,and(III)the action of unloading disturbance.After the pillar recovery,the settlement above the first recovering pillar is the largest,which has a traction effect on the settlement in other areas.The settlement process can be divided into two stages,stable displacement stage and unstable displacement stage.When the pillar-room system undergoes the unstable displacement stage,rock spalling and further cascading collapse will occur.
文摘Objective: To investigate the urinary soy isoflavone metabolites from women, female piglets and rats fed with diet containing soy protein. Methods: Urinary samples from human and animals were collected after soy diet consumption. Identification for soy isoflavone metabolites in urine samples was processed using an Agilent Bruker LC Esquire ion trap system. Quantification of aglycone and conjugated soy isoflavone metabolites were also analyzed using a method published previously. Results: Identification studies showed that aglycones and conjugates of soy isoflavone metabolites were found in women and porcine samples. Interestingly, glucuronide conjugate of equol, besides glucuronide conjugates of genistein and daidzein, were found in rat urine. Glucuronide conjugate of equol was the major metabolite found in rat urine. A quantitative study showed that conjugated forms of isoflavones were more than 90% in woman urine, were between 80.5% and 84.5% in female porcine urine, and were less than 50% in female rat urine. Conclusion: Equol is the major metabolite found in female rat urine, but it is not found in woman or female porcine urine. Urinary profiles show that porcine model is more appropriate for mimicking human soy diet consuming studies.
基金Project(51375119) supported by the National Natural Science Foundation of China
文摘Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultrasonic vibration assisted grinding of brittle materials,the surface morphologies of grinding wheel were obtained firstly in the present work,the grinding wheel model was developed and the abrasive trajectories in ultrasonic vibration assisted grinding were also investigated,the theoretical model for surface roughness was developed based on the above analysis.The prediction model was developed by using Gaussian processing regression(GPR)due to the influence of brittle fracture on machined surface roughness.In order to validate both the proposed theoretical and GPR models,32sets of experiments of ultrasonic vibration assisted grinding of BK7optical glass were carried out.Experimental results show that the average relative errors of the theoretical model and GPR prediction model are13.11%and8.12%,respectively.The GPR prediction results can match well with the experimental results.