Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-a...Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction.展开更多
This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with...This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.展开更多
基金Supported by National Basic Research Program of China("973"Program,No.2013CB632305)
文摘Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction.
基金Project(U1234208)supported by the National Natural Science Foundation of ChinaProject(2016YFB1200401)supported by the National Key Research and Development Program of China
文摘This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.