The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of fiv...The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si-O tetrahedra Qi from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi-Ca-Qj and Qi-[Ob]-Qj, from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are equivalent connections.展开更多
Glass-like carbons (GCs) were prepared by carbonization of acetone-furfural resin in nitrogen atmosphere at 850℃, followed by heat treatment over a range of 1 200-2 500℃in inert atmosphere. The effect of heat trea...Glass-like carbons (GCs) were prepared by carbonization of acetone-furfural resin in nitrogen atmosphere at 850℃, followed by heat treatment over a range of 1 200-2 500℃in inert atmosphere. The effect of heat treatment temperature (HTT) on the oxidation behavior was investigated by dynamic and isothermal thermogravimetric analyses. The structure of GC was examined by X-ray diffractometry (XRD) and the morphologies of GC before and after oxidation were examined by scanning electron microscopy (SEM). It is shown that the GC samples present peculiar oxidation behavior. The anti-oxidation behavior increases with increasing the HTT to 1 600 ℃, whereas decreases gradually thereafter. GC sample heat treated at 1 600℃ obtains relatively optimal anti-oxidation properties under this condition. During the oxidation, this material produces grid network matrix surface and numerous nodular residues on the surface, resulting in excellent resistance to the attack of oxygen atoms.展开更多
The structural relaxation of a cluster containing 55 atoms at elevated temperatures is simulated by molecular dynamics. The interatomic interactions are given by using the embedded atom method (EAM) potential. By de...The structural relaxation of a cluster containing 55 atoms at elevated temperatures is simulated by molecular dynamics. The interatomic interactions are given by using the embedded atom method (EAM) potential. By decomposing the peaks of the radial distribution functions (RDFs) according to the pair analysis technique, the local structural patterns are identified for this cluster. During increasing temperature, structural changes of different shells determined by atom density profiles result in an abrupt increase in internal energy. The simulations show how local structural changes can strongly cause internal energy to change accordingly.展开更多
The structure of a room temperature asymmetrical dicationic ionic liquid (ADIL), 1-(pyridinium-l-yl) propane- (1-methylpiperidinium) bi[bis(tfifluoromethanesulfonyl)imide] ([PyC3Pi][NTf2]2), was studied by t...The structure of a room temperature asymmetrical dicationic ionic liquid (ADIL), 1-(pyridinium-l-yl) propane- (1-methylpiperidinium) bi[bis(tfifluoromethanesulfonyl)imide] ([PyC3Pi][NTf2]2), was studied by the X-ray difo fraction method. Meanwhile, thermal analysis of [PyC3Pi][NTf2]2 was also studied using non-isothermal thermo- gravimetric analysis (TGA). The title crystal belongs to the triclinic with space group Pi and unit-cell parameters a : 0.95217 (8) nm, b = 1.05129 (11 ) nm, c = 1.70523 (14) nm, ct = 89,759 (8)°,β = 80.657 (7)°, γ=68.007 (9)°, and F(000) = 792. Thermal stability and thermal decomposition kinetics of the title compound were also investigated using TGA under the atmosphere of highly pure nitrogen. Heating curves at different rates were cor- related with kinetic equations Friedman and ASTM (also called iso-conversion method). The values of average activation E (kJ·mol^-1 ) and pre-exponential constant lgA are 149.58 kJ. mol- 1 and 8.83, respectively, which were obtained by the two methods. The kinetic model function, activation energy and pre-exponential constant of this reaction using the multivariate non-linear-regression method were f(a) = (1 -a)(1 + 4.1870a), 151.04 kJ·mol^-1 and 8.81, respectively, which were basically consistent with iso-conversion methods.展开更多
The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbo...The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.展开更多
Ultrafast electron diffraction (UED) is a rapidly advancing technique capable of recording the atomic-detail structural dynamics in real time. We report the establishment of the first UED system in China. Employing ...Ultrafast electron diffraction (UED) is a rapidly advancing technique capable of recording the atomic-detail structural dynamics in real time. We report the establishment of the first UED system in China. Employing this UED apparatus, both the coherent and the concurrent thermal lattice motions in an aluminium thin-film, trigged by ultrafast laser heating, have been observed. These results demonstrate its ability to directly measure a sub-milli-angstrom lattice spacing change on a sub-picosecond time scale.展开更多
The research focuses on the effect of air movement through building constructions. Although the typical air movement inside building constructions is quite small (velocity is of order -10-5 m/s), this research shows...The research focuses on the effect of air movement through building constructions. Although the typical air movement inside building constructions is quite small (velocity is of order -10-5 m/s), this research shows the impact on the heat and moisture characteristics. The paper presents a case study on the modeling and simulation of 2D heat and moisture transport with and without air movement for a building construction using a state-of-art multiphysics FEM software tool. Most other heat and moisture related models don't include airflow or use a steady airflow through the construction during the simulation period. However, in this model, the wind induced pressure is dynamic and thus also the airflow through the construction is dynamic. For this particular case study, the results indicate that at the intemal surface, the vapor pressure is almost not influenced by both the 2D effect and the wind speed. The temperatures at the inner surface are mostly influenced by the 2D effect. Only at wind pressure differences above 30 Pa, the airflow has a significant effect. At the extemal surface, the temperatttres are not influenced by both the 2D effect and the wind speed. However, the vapor pressure seems to be quite dependent on the wind induced pressure. Overall it is concluded that air movement through building materials seems to have a significant impact on the heat and moisture characteristics. In order to verify this statement and validate the models, new in-depth experiments including air flow through materials are recommended.展开更多
The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. ...The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. There are 248 warm or hot springs in this area, and 11 have temperatures beyond the local boiling temperature. Most of these hot springs are distributed along the Jinshajiang, Dege-Xiangcheng, Ganzi-Litang, and Xianshuihe faults, forming a NW-SE hydrothermal belt. A geothermal analysis of this high-temperature hydrothermal area is an important basis for understanding the deep geodynamic process of the eastern syntaxis of the Qinghai-Tibet Plateau. In addition, this study offers an a priori view to utilize geothermal resources, which is important in both scientific research and application. We use gravity, magnetic, seismic, and helium isotope data to analyze the crust-mantle heat flow ratio and deep geothermal structure. The results show that the background terrestrial heat flow descends from southwest to northeast. The crustal heat ratio is not more than 60%. The high temperature hydrothermal active is related to crustal dynamics processes. Along the Batang-Litang-Kangding line, the Moho depth increases eastward, which is consistent with the changing Qc/Qm(crustal/mantle heat flow) ratio trend. The geoid in the hydrothermal zone is 4–6 km higher than the surroundings, forming a local "platform". The NW-SE striking local tensile stress zone and uplift structure in the upper and middle crust corresponds with the surface hydrothermal active zone. There is an average Curie Point Depth(CPD) of 19.5–22.5 km in Batang, Litang, and Kangding. The local shear-wave(S-wave) velocity is relatively low in the middle and lower crust. The S-wave shows a low velocity trap(Vs<3.2 km s.1) at 15–30 km, which is considered a high-temperature partial melting magma, the crustal source of the hydrothermal active zone. We conclude that the hydrothermal system in this area can be divided into Batang-type and Kangding-type, both of which rely on a crustal heating cycle of atmospheric precipitation and surface water along the fracture zone. The heat is derived from the middle and lower crust: groundwater penetrates the deep faults bringing geothermal energy back to the surface and forming high-temperature springs.展开更多
A series of lanthanide complexes with the 3,4,5-trimethoxybenzoic acid (3,4,5-tmoba) and 1,10-phenanthroline(phen), [Ln(3,4,5-tmoba)3phen]2(Ln = Pr(l), Nd (2) and Ho(3)), have been synthesized and charac...A series of lanthanide complexes with the 3,4,5-trimethoxybenzoic acid (3,4,5-tmoba) and 1,10-phenanthroline(phen), [Ln(3,4,5-tmoba)3phen]2(Ln = Pr(l), Nd (2) and Ho(3)), have been synthesized and characterized by a series of techniques including elemental analysis, IR spectra, X-ray crystallography and TG/DSC-FTIR technology. The three complexes have two kinds of coordination modes, in which the Pr3+ and Nd3+ cations are nine-coordinated and the Ho3+ cation is eight-coordinated. The three-dimensional IR accumulation spectra of gaseous products for complexes 1-3 were analyzed and the gaseous products were identified by the typical IR spectra obtained from the 3D surface graphs. Meanwhile, we obtained the activation energy E of the first steps of complexes 1-3 by the integral isoconversional non-linear (NL-INT) method and discussed the non-isothermal kinetics of complexes 1-3 using the Malek method. Finally, SB(m, n) was defined as the kinetic method of the first-step thermal decomposition. The thermodynamic parameters △G≠, △H≠ and △S≠ of activation at the peak temperature were also calculated.展开更多
基金Project(2012CB722805)supported by the National Basic Research Program of ChinaProjects(50504010,50974083,51174131,51374141)supported by the National Natural Science Foundation of China+1 种基金Project(50774112)supported by the Joint Fund of NSFC and Baosteel,ChinaProject(07QA4021)supported by the Shanghai"Phosphor"Science Foundation,China
文摘The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si-O tetrahedra Qi from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi-Ca-Qj and Qi-[Ob]-Qj, from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are equivalent connections.
基金Project (2006CB600902) supported by the National Basic Research Program of China
文摘Glass-like carbons (GCs) were prepared by carbonization of acetone-furfural resin in nitrogen atmosphere at 850℃, followed by heat treatment over a range of 1 200-2 500℃in inert atmosphere. The effect of heat treatment temperature (HTT) on the oxidation behavior was investigated by dynamic and isothermal thermogravimetric analyses. The structure of GC was examined by X-ray diffractometry (XRD) and the morphologies of GC before and after oxidation were examined by scanning electron microscopy (SEM). It is shown that the GC samples present peculiar oxidation behavior. The anti-oxidation behavior increases with increasing the HTT to 1 600 ℃, whereas decreases gradually thereafter. GC sample heat treated at 1 600℃ obtains relatively optimal anti-oxidation properties under this condition. During the oxidation, this material produces grid network matrix surface and numerous nodular residues on the surface, resulting in excellent resistance to the attack of oxygen atoms.
基金Project supported by the National Natural Science Foundation of China (Grant No 50572013) and the National Basic Research Program of China (Grant No 2006CB605103). Corresponding author.
文摘The structural relaxation of a cluster containing 55 atoms at elevated temperatures is simulated by molecular dynamics. The interatomic interactions are given by using the embedded atom method (EAM) potential. By decomposing the peaks of the radial distribution functions (RDFs) according to the pair analysis technique, the local structural patterns are identified for this cluster. During increasing temperature, structural changes of different shells determined by atom density profiles result in an abrupt increase in internal energy. The simulations show how local structural changes can strongly cause internal energy to change accordingly.
基金the National Natural Science Foundation of China(21176228)the National Key Technology Support Program of China(2013BAC01B04)the Science and Technology Research Projects of Zhengzhou City(141PQYJS555)
文摘The structure of a room temperature asymmetrical dicationic ionic liquid (ADIL), 1-(pyridinium-l-yl) propane- (1-methylpiperidinium) bi[bis(tfifluoromethanesulfonyl)imide] ([PyC3Pi][NTf2]2), was studied by the X-ray difo fraction method. Meanwhile, thermal analysis of [PyC3Pi][NTf2]2 was also studied using non-isothermal thermo- gravimetric analysis (TGA). The title crystal belongs to the triclinic with space group Pi and unit-cell parameters a : 0.95217 (8) nm, b = 1.05129 (11 ) nm, c = 1.70523 (14) nm, ct = 89,759 (8)°,β = 80.657 (7)°, γ=68.007 (9)°, and F(000) = 792. Thermal stability and thermal decomposition kinetics of the title compound were also investigated using TGA under the atmosphere of highly pure nitrogen. Heating curves at different rates were cor- related with kinetic equations Friedman and ASTM (also called iso-conversion method). The values of average activation E (kJ·mol^-1 ) and pre-exponential constant lgA are 149.58 kJ. mol- 1 and 8.83, respectively, which were obtained by the two methods. The kinetic model function, activation energy and pre-exponential constant of this reaction using the multivariate non-linear-regression method were f(a) = (1 -a)(1 + 4.1870a), 151.04 kJ·mol^-1 and 8.81, respectively, which were basically consistent with iso-conversion methods.
基金the Fundamental Research Funds for the Central Universities of China(No.N2101023).
文摘The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10728409, 10734130, 10735050 and 60621063, and the National Basic Research Programme of China under Grant No 2007CB815102.
文摘Ultrafast electron diffraction (UED) is a rapidly advancing technique capable of recording the atomic-detail structural dynamics in real time. We report the establishment of the first UED system in China. Employing this UED apparatus, both the coherent and the concurrent thermal lattice motions in an aluminium thin-film, trigged by ultrafast laser heating, have been observed. These results demonstrate its ability to directly measure a sub-milli-angstrom lattice spacing change on a sub-picosecond time scale.
文摘The research focuses on the effect of air movement through building constructions. Although the typical air movement inside building constructions is quite small (velocity is of order -10-5 m/s), this research shows the impact on the heat and moisture characteristics. The paper presents a case study on the modeling and simulation of 2D heat and moisture transport with and without air movement for a building construction using a state-of-art multiphysics FEM software tool. Most other heat and moisture related models don't include airflow or use a steady airflow through the construction during the simulation period. However, in this model, the wind induced pressure is dynamic and thus also the airflow through the construction is dynamic. For this particular case study, the results indicate that at the intemal surface, the vapor pressure is almost not influenced by both the 2D effect and the wind speed. The temperatures at the inner surface are mostly influenced by the 2D effect. Only at wind pressure differences above 30 Pa, the airflow has a significant effect. At the extemal surface, the temperatttres are not influenced by both the 2D effect and the wind speed. However, the vapor pressure seems to be quite dependent on the wind induced pressure. Overall it is concluded that air movement through building materials seems to have a significant impact on the heat and moisture characteristics. In order to verify this statement and validate the models, new in-depth experiments including air flow through materials are recommended.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41574074, 41174085, 41430319)the Innovation Team Project of Chinese Academy of Sciences (Grant No. KZZD-EW-TZ-19)the Strategic Pilot Technology of Chinese Academy of Sciences (Grant No. XDA1103010102)
文摘The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. There are 248 warm or hot springs in this area, and 11 have temperatures beyond the local boiling temperature. Most of these hot springs are distributed along the Jinshajiang, Dege-Xiangcheng, Ganzi-Litang, and Xianshuihe faults, forming a NW-SE hydrothermal belt. A geothermal analysis of this high-temperature hydrothermal area is an important basis for understanding the deep geodynamic process of the eastern syntaxis of the Qinghai-Tibet Plateau. In addition, this study offers an a priori view to utilize geothermal resources, which is important in both scientific research and application. We use gravity, magnetic, seismic, and helium isotope data to analyze the crust-mantle heat flow ratio and deep geothermal structure. The results show that the background terrestrial heat flow descends from southwest to northeast. The crustal heat ratio is not more than 60%. The high temperature hydrothermal active is related to crustal dynamics processes. Along the Batang-Litang-Kangding line, the Moho depth increases eastward, which is consistent with the changing Qc/Qm(crustal/mantle heat flow) ratio trend. The geoid in the hydrothermal zone is 4–6 km higher than the surroundings, forming a local "platform". The NW-SE striking local tensile stress zone and uplift structure in the upper and middle crust corresponds with the surface hydrothermal active zone. There is an average Curie Point Depth(CPD) of 19.5–22.5 km in Batang, Litang, and Kangding. The local shear-wave(S-wave) velocity is relatively low in the middle and lower crust. The S-wave shows a low velocity trap(Vs<3.2 km s.1) at 15–30 km, which is considered a high-temperature partial melting magma, the crustal source of the hydrothermal active zone. We conclude that the hydrothermal system in this area can be divided into Batang-type and Kangding-type, both of which rely on a crustal heating cycle of atmospheric precipitation and surface water along the fracture zone. The heat is derived from the middle and lower crust: groundwater penetrates the deep faults bringing geothermal energy back to the surface and forming high-temperature springs.
基金the National Natural Science Foundation of China (21073053,21073052,20773034)the Natural Science Foundation of Hebei Province (B2012205022)
文摘A series of lanthanide complexes with the 3,4,5-trimethoxybenzoic acid (3,4,5-tmoba) and 1,10-phenanthroline(phen), [Ln(3,4,5-tmoba)3phen]2(Ln = Pr(l), Nd (2) and Ho(3)), have been synthesized and characterized by a series of techniques including elemental analysis, IR spectra, X-ray crystallography and TG/DSC-FTIR technology. The three complexes have two kinds of coordination modes, in which the Pr3+ and Nd3+ cations are nine-coordinated and the Ho3+ cation is eight-coordinated. The three-dimensional IR accumulation spectra of gaseous products for complexes 1-3 were analyzed and the gaseous products were identified by the typical IR spectra obtained from the 3D surface graphs. Meanwhile, we obtained the activation energy E of the first steps of complexes 1-3 by the integral isoconversional non-linear (NL-INT) method and discussed the non-isothermal kinetics of complexes 1-3 using the Malek method. Finally, SB(m, n) was defined as the kinetic method of the first-step thermal decomposition. The thermodynamic parameters △G≠, △H≠ and △S≠ of activation at the peak temperature were also calculated.