[Objective] The aim was to research macrobenthos community structure and its relations with environmental factors in three reservoirs. [Method] Benthic diversity and water quality of Yuqiao Reservoir, Beidagang Reserv...[Objective] The aim was to research macrobenthos community structure and its relations with environmental factors in three reservoirs. [Method] Benthic diversity and water quality of Yuqiao Reservoir, Beidagang Reservoir and Er- wangzhuang Reservoir were investigated in May, July and September 2011, respec- tively. []Result] Of all the 14 sampling sites, 22 species of macroinvertebrates were collected, totally, which included 6 species of aquatic insects, 7 species of Mollusca, 2 species of Crustacean, 7 species of Oligochaeta. The species of macroinverte- brates during May, July and September in Yuqiao reservoir were 11, 8 and 10, respectively. The dominant species were Chironomus sinicus, and Monopylephorus limosus. The average density and biomass of the macrobenthos were 132.43 ind./m2 and 50.09 g/m2. Yuqiao reservoir was mostly at status of premediate polluted, according to the Margalef index, Shannon index and Pielou index. The species of during May, July and September in Beidagang reservoir were 5 5 and 5, respectively. The dominant species were Chironomus sinicus, Penaeus vannamei. The average density and biomass of the macrobenthos were 218 ind./m2 and 2.70 g/m2. Beidagang reservoir was mostly at status of heavy polluted, accord- ing to the Margalef index, Shannon-wiener index, Pielou index. The species of during May, July and September in Erwangzhuang reservoir were 3, 5 and 5, respectively. The dominant species were Monopylephorus limosus, Chi- ronomus sinicus. The average density and biomass of the macrobenthos were 104 ind/m2 and 0.20 g/m2. Erwangzhuang reservoir was mostly at status of intermediate polluted, according to the Margalef index, Shannon index, Pielou index. The density of zoobenthos in Yuqiao Reservoir was positively significantly correlated with TP (P〉 0.05), negatively correlated with NH4+-N (P〉0.05), positively correlated with COD (P〈 0.01), not significantly correlated with other environment factors (P〉0.05). There was no significant correlation between biomass of zoobenthos and environment factors. The density of zoobenthos in Beidagang Reservoir with NH4+-N was positively signif- icantly correlated (P〈0.05), not significantly correlated with other aquatic environment factors (P〉0.05). There was no significant correlation between biomass of zoobenthos and environment factors. The density of zoobenthos in Erwangzhuang Reser- voir with NO3-N was positively significantly correlated (P〈0.05), not significant cor- related with other aquatic environment factors (F〉0.05). The biomass of zoobenthos in Erwangzhuang Reservoir with NH4+-N was positively significantly correlated (P〈 0.05), not significant correlated with other aquatic environment factors (P〉0.05). [Conclusion] It is indicated that this three reservoirs were all eutrophied and polluted, and the eurephication extent change of water in three reservoirs is as follows: Beidagang reservoir〉Erwangzhuang reservoir〉Yuqiao reservoir.展开更多
The dynamics of soil animals was studied in seven representative forest communities in the north of the Da Hinggan Mountains, Northeast China. The results indicate that it was distinctive in the changes of the numbers...The dynamics of soil animals was studied in seven representative forest communities in the north of the Da Hinggan Mountains, Northeast China. The results indicate that it was distinctive in the changes of the numbers of soil animals and groups and diversity in relationship with seasons for macrofauna and meso-micro fauna in the study area. The numbers of the observed soil animals in different months were: October>August>June. Group number was larger in August and October, but smaller in June. The change of diversity index in different months was: August>June>Oc- tober. The biomass for macrofauna in different months was: October>June>August. The composition and number of each functional group was relatively stable. In the community of the predominant soil environment, the percentage of saprophagous animals was higher than carnivorous animals and herbivorous animals. The dynamics changes of sapro- phagous and carnivorous animals were distinctive, increasing from June to October, while the change of herbivorous animals was unremarkable.展开更多
基金Supported by Tianjin Aquatic Species Diveristy Surveying,Monitoring and Evaluation Proejct~~
文摘[Objective] The aim was to research macrobenthos community structure and its relations with environmental factors in three reservoirs. [Method] Benthic diversity and water quality of Yuqiao Reservoir, Beidagang Reservoir and Er- wangzhuang Reservoir were investigated in May, July and September 2011, respec- tively. []Result] Of all the 14 sampling sites, 22 species of macroinvertebrates were collected, totally, which included 6 species of aquatic insects, 7 species of Mollusca, 2 species of Crustacean, 7 species of Oligochaeta. The species of macroinverte- brates during May, July and September in Yuqiao reservoir were 11, 8 and 10, respectively. The dominant species were Chironomus sinicus, and Monopylephorus limosus. The average density and biomass of the macrobenthos were 132.43 ind./m2 and 50.09 g/m2. Yuqiao reservoir was mostly at status of premediate polluted, according to the Margalef index, Shannon index and Pielou index. The species of during May, July and September in Beidagang reservoir were 5 5 and 5, respectively. The dominant species were Chironomus sinicus, Penaeus vannamei. The average density and biomass of the macrobenthos were 218 ind./m2 and 2.70 g/m2. Beidagang reservoir was mostly at status of heavy polluted, accord- ing to the Margalef index, Shannon-wiener index, Pielou index. The species of during May, July and September in Erwangzhuang reservoir were 3, 5 and 5, respectively. The dominant species were Monopylephorus limosus, Chi- ronomus sinicus. The average density and biomass of the macrobenthos were 104 ind/m2 and 0.20 g/m2. Erwangzhuang reservoir was mostly at status of intermediate polluted, according to the Margalef index, Shannon index, Pielou index. The density of zoobenthos in Yuqiao Reservoir was positively significantly correlated with TP (P〉 0.05), negatively correlated with NH4+-N (P〉0.05), positively correlated with COD (P〈 0.01), not significantly correlated with other environment factors (P〉0.05). There was no significant correlation between biomass of zoobenthos and environment factors. The density of zoobenthos in Beidagang Reservoir with NH4+-N was positively signif- icantly correlated (P〈0.05), not significantly correlated with other aquatic environment factors (P〉0.05). There was no significant correlation between biomass of zoobenthos and environment factors. The density of zoobenthos in Erwangzhuang Reser- voir with NO3-N was positively significantly correlated (P〈0.05), not significant cor- related with other aquatic environment factors (F〉0.05). The biomass of zoobenthos in Erwangzhuang Reservoir with NH4+-N was positively significantly correlated (P〈 0.05), not significant correlated with other aquatic environment factors (P〉0.05). [Conclusion] It is indicated that this three reservoirs were all eutrophied and polluted, and the eurephication extent change of water in three reservoirs is as follows: Beidagang reservoir〉Erwangzhuang reservoir〉Yuqiao reservoir.
基金Under the auspices of National Natural Science Foundation of China (No. 40671004)Natural Science Foundation of Heilongjiang Province (No. G200812)Specialized Research Fund for the Doctoral Program of Higher Education (No. 200802310001)
文摘The dynamics of soil animals was studied in seven representative forest communities in the north of the Da Hinggan Mountains, Northeast China. The results indicate that it was distinctive in the changes of the numbers of soil animals and groups and diversity in relationship with seasons for macrofauna and meso-micro fauna in the study area. The numbers of the observed soil animals in different months were: October>August>June. Group number was larger in August and October, but smaller in June. The change of diversity index in different months was: August>June>Oc- tober. The biomass for macrofauna in different months was: October>June>August. The composition and number of each functional group was relatively stable. In the community of the predominant soil environment, the percentage of saprophagous animals was higher than carnivorous animals and herbivorous animals. The dynamics changes of sapro- phagous and carnivorous animals were distinctive, increasing from June to October, while the change of herbivorous animals was unremarkable.