Animal personalities have been a major focus of behavioral ecology over the past decade. Consistent individual dif ferences in behavior have been found across taxa, and have been shown to influence a range of ecologic...Animal personalities have been a major focus of behavioral ecology over the past decade. Consistent individual dif ferences in behavior have been found across taxa, and have been shown to influence a range of ecological processes. The role of personalities in sexual selection has been considered, and examples exist that show selection for personality traits with both assortative and disassortative mating patterns between personality types. One overlooked aspect of the personality and sexual se lection literature is the potential for personalitysignaling interactions, specifically with complex signaling. Complex signaling is a diverse topic in itself, and in short, consists of multiple signals within one or more modalities that interact to elicit a receiver response. Research into complex signaling has been thorough, although at times studies discover complex signaling systems that fail to fit into one of the existing hypotheses in the literature. Here, we argue that personalities may interact with complex signal ing, which should be considered by researchers of both personality and sexual selection and communication. We describe several ways in which personalitycomplex signaling interactions could affect both the signaler and receiver, and the way in which they may drive personalityspecific signals as well as receiver preferences. Finally, we discuss how considering personality in com plex signaling studies may inform theory as well as improve the ability of researchers to accurately describe its function.展开更多
Brain size and weight vary tremendously in the animal kingdom. It has been suggested that brain structural develop- ment must evolve balanced between the advantages of dealing with greater social challenges mad the en...Brain size and weight vary tremendously in the animal kingdom. It has been suggested that brain structural develop- ment must evolve balanced between the advantages of dealing with greater social challenges mad the energetic costs of maintain- ing and developing larger brains. Here we ask if interspecific differences in cooperative behaviour (i.e. cleaning behaviour) are related to brain weight variations in four close-related species of Labrid fish: two are obligatory cleanerfish throughout their en- tire life (Labroides dimidiatus and L. bicolor), one facultative cleaner fish Labropsis australis and one last species that never en- gage in cleaning Labrichthys unilineatus. We first search for the link between the rate of species' cooperation and its relative brain weight, and finally, if the degree of social complexity and cooperation are reflected in the weight of its major brain sub- structures. Overall, no differences were found in relative brain weight (in relation to body weight) across species. Fine-scale dif- ferences were solely demonstrated for the facultative cleaner L. australis, at the brainstem level. Furthermore, data visual exami- nation indicates that the average cerebellum and brainstem weights appear to be larger for L. dimidiatus. Because variation was solely found at specific brain areas (such as cerebellum and brainstem) and not for the whole brain weight values, it suggests that species social-ecological and cognitive demands may be directly contributing to a selective investment in relevant brain areas. This study provides first preliminary evidence that links potential differences in cognitive ability in cooperative behaviour to how these may mediate the evolution of brain structural development in non-mammal vertebrate groups .展开更多
Caenorhabditis elegans (C. elegans) is widely adopted as a model organism for a variety of biological studies including development, genetics and neurobiology. Micro-scale microfluidic technology is capable of handlin...Caenorhabditis elegans (C. elegans) is widely adopted as a model organism for a variety of biological studies including development, genetics and neurobiology. Micro-scale microfluidic technology is capable of handling single or populations of C. elegans in high throughput format and allows for the precise spatial and temporal control of their environment, which is well suited for the study of worms in different aspects. In this review, we highlight the recent advances in microfluidic technology for the analysis of worms ranging from behavioral studies to neurobiology. We believe that microfluidic device can further be applied to study the different aspects of worms, extending from fundamental investigation of behavioral dynamics to more complicated biological processes including neurochemistry and learning behaviors.展开更多
文摘Animal personalities have been a major focus of behavioral ecology over the past decade. Consistent individual dif ferences in behavior have been found across taxa, and have been shown to influence a range of ecological processes. The role of personalities in sexual selection has been considered, and examples exist that show selection for personality traits with both assortative and disassortative mating patterns between personality types. One overlooked aspect of the personality and sexual se lection literature is the potential for personalitysignaling interactions, specifically with complex signaling. Complex signaling is a diverse topic in itself, and in short, consists of multiple signals within one or more modalities that interact to elicit a receiver response. Research into complex signaling has been thorough, although at times studies discover complex signaling systems that fail to fit into one of the existing hypotheses in the literature. Here, we argue that personalities may interact with complex signal ing, which should be considered by researchers of both personality and sexual selection and communication. We describe several ways in which personalitycomplex signaling interactions could affect both the signaler and receiver, and the way in which they may drive personalityspecific signals as well as receiver preferences. Finally, we discuss how considering personality in com plex signaling studies may inform theory as well as improve the ability of researchers to accurately describe its function.
文摘Brain size and weight vary tremendously in the animal kingdom. It has been suggested that brain structural develop- ment must evolve balanced between the advantages of dealing with greater social challenges mad the energetic costs of maintain- ing and developing larger brains. Here we ask if interspecific differences in cooperative behaviour (i.e. cleaning behaviour) are related to brain weight variations in four close-related species of Labrid fish: two are obligatory cleanerfish throughout their en- tire life (Labroides dimidiatus and L. bicolor), one facultative cleaner fish Labropsis australis and one last species that never en- gage in cleaning Labrichthys unilineatus. We first search for the link between the rate of species' cooperation and its relative brain weight, and finally, if the degree of social complexity and cooperation are reflected in the weight of its major brain sub- structures. Overall, no differences were found in relative brain weight (in relation to body weight) across species. Fine-scale dif- ferences were solely demonstrated for the facultative cleaner L. australis, at the brainstem level. Furthermore, data visual exami- nation indicates that the average cerebellum and brainstem weights appear to be larger for L. dimidiatus. Because variation was solely found at specific brain areas (such as cerebellum and brainstem) and not for the whole brain weight values, it suggests that species social-ecological and cognitive demands may be directly contributing to a selective investment in relevant brain areas. This study provides first preliminary evidence that links potential differences in cognitive ability in cooperative behaviour to how these may mediate the evolution of brain structural development in non-mammal vertebrate groups .
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-H18)Instrument Research and Development Program of the Chinese Academy of Sciences (YZ200908)the National Natural Science Foundation of China (11161160552)
文摘Caenorhabditis elegans (C. elegans) is widely adopted as a model organism for a variety of biological studies including development, genetics and neurobiology. Micro-scale microfluidic technology is capable of handling single or populations of C. elegans in high throughput format and allows for the precise spatial and temporal control of their environment, which is well suited for the study of worms in different aspects. In this review, we highlight the recent advances in microfluidic technology for the analysis of worms ranging from behavioral studies to neurobiology. We believe that microfluidic device can further be applied to study the different aspects of worms, extending from fundamental investigation of behavioral dynamics to more complicated biological processes including neurochemistry and learning behaviors.