南京航空航天大学纳米科学研究所郭万林教授领导的研究团队突破性地发现了一种常压下的全新动电现象--拽势(drawing potential),该研究以"Generating electricity by moving a droplet of ionic liquid along grapheme"为题发表在Na...南京航空航天大学纳米科学研究所郭万林教授领导的研究团队突破性地发现了一种常压下的全新动电现象--拽势(drawing potential),该研究以"Generating electricity by moving a droplet of ionic liquid along grapheme"为题发表在Nature Nanotechnology 2014年第5期.同时,该研究团队于2014年5月6日在Nature Communications发表的"Waving potential in graphene"一文中提出了利用石墨烯.展开更多
Aiming at the limitation of control accuracy caused by hysteresis and creep for a piezoelectric actuator, the hysteresis phenomenon is explained based on the microscopic polarization mechanism and domain wall theory. ...Aiming at the limitation of control accuracy caused by hysteresis and creep for a piezoelectric actuator, the hysteresis phenomenon is explained based on the microscopic polarization mechanism and domain wall theory. Then a control model based on polarization is established, which can reduce the hysteresis and creep remarkablely. The experimental results show that the polarization control method is with more linearity and less hysteresis compared with the voltage control method.展开更多
Gauge potential plays an important role in exploring exotic phenomena in the single- and many-body quantum systems.In this paper,we propose a scheme to create both new Abelian and non-Abelian gauge potentials by adiab...Gauge potential plays an important role in exploring exotic phenomena in the single- and many-body quantum systems.In this paper,we propose a scheme to create both new Abelian and non-Abelian gauge potentials by adiabatically controlling the degenerate Dicke model in cavity quantum electrodynamics.It is shown that a non-Abelian gauge potential is achieved only for a single atom,whereas an Abelianizen diagonal gauge potential is realized for the atomic ensemble.More importantly,two interesting quantum phenomena such as the geometric phase and the magnetic monopole induced by our created gauge potentials are also predicted.The possible physical realization is presented in the macroscopic circuit quantum electrodynamics with the Cooper pair boxes,which act as the artificial two-level atoms controlled by the gate voltage and the external magnetic flux.展开更多
A novel modified Rayleigh model was developed for compensating hysteresis problem of an atomic force microscope(AFM) scanner.In high driving fields,piezoelectric actuators that integrated a scanner have severe hystere...A novel modified Rayleigh model was developed for compensating hysteresis problem of an atomic force microscope(AFM) scanner.In high driving fields,piezoelectric actuators that integrated a scanner have severe hysteresis,which can cause serious displacement errors.Piezoelectric hysteresis is from various origins including movement of defects,grain boundary effects,and displacement of interfaces.Furthermore,because its characteristic is stochastic,it is almost impossible to predict the piezoelectric hysteresis analytically.Therefore,it was predicted phenomenologically,which means that the relationship between inputs and outputs is formulated.The typical phenomenological approach is the Rayleigh model.However,the model has the discrepancy with experiment result as the fields increase.To overcome the demerit of the Rayleigh model,a modified Rayleigh model was proposed.In the modified Rayleigh model,each coefficient should be defined differently according to the field direction due to the increase of the asymmetry in the high fields.By applying an inverse form of this modified Rayleigh model to an AFM scanner,it is proved that hysteresis can be compensated to a position error of less than 5%.This model has the merits of reducing complicated fitting procedures and saving computation time compared with the Preisach model.展开更多
文摘南京航空航天大学纳米科学研究所郭万林教授领导的研究团队突破性地发现了一种常压下的全新动电现象--拽势(drawing potential),该研究以"Generating electricity by moving a droplet of ionic liquid along grapheme"为题发表在Nature Nanotechnology 2014年第5期.同时,该研究团队于2014年5月6日在Nature Communications发表的"Waving potential in graphene"一文中提出了利用石墨烯.
基金the National Natural Science Foundation of China (Grant No.60604031)
文摘Aiming at the limitation of control accuracy caused by hysteresis and creep for a piezoelectric actuator, the hysteresis phenomenon is explained based on the microscopic polarization mechanism and domain wall theory. Then a control model based on polarization is established, which can reduce the hysteresis and creep remarkablely. The experimental results show that the polarization control method is with more linearity and less hysteresis compared with the voltage control method.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10904092,10934004,60978018,11074184,and 11074154the Zhejiang Provincial Natural Science Foundation under Grant No.Y6090001
文摘Gauge potential plays an important role in exploring exotic phenomena in the single- and many-body quantum systems.In this paper,we propose a scheme to create both new Abelian and non-Abelian gauge potentials by adiabatically controlling the degenerate Dicke model in cavity quantum electrodynamics.It is shown that a non-Abelian gauge potential is achieved only for a single atom,whereas an Abelianizen diagonal gauge potential is realized for the atomic ensemble.More importantly,two interesting quantum phenomena such as the geometric phase and the magnetic monopole induced by our created gauge potentials are also predicted.The possible physical realization is presented in the macroscopic circuit quantum electrodynamics with the Cooper pair boxes,which act as the artificial two-level atoms controlled by the gate voltage and the external magnetic flux.
基金Project supported by the Second Stage of Brain Korea 21 ProjectProject supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program Funded by the Ministry of Science and TechnologyProject supported by Changwon National University,Korea
文摘A novel modified Rayleigh model was developed for compensating hysteresis problem of an atomic force microscope(AFM) scanner.In high driving fields,piezoelectric actuators that integrated a scanner have severe hysteresis,which can cause serious displacement errors.Piezoelectric hysteresis is from various origins including movement of defects,grain boundary effects,and displacement of interfaces.Furthermore,because its characteristic is stochastic,it is almost impossible to predict the piezoelectric hysteresis analytically.Therefore,it was predicted phenomenologically,which means that the relationship between inputs and outputs is formulated.The typical phenomenological approach is the Rayleigh model.However,the model has the discrepancy with experiment result as the fields increase.To overcome the demerit of the Rayleigh model,a modified Rayleigh model was proposed.In the modified Rayleigh model,each coefficient should be defined differently according to the field direction due to the increase of the asymmetry in the high fields.By applying an inverse form of this modified Rayleigh model to an AFM scanner,it is proved that hysteresis can be compensated to a position error of less than 5%.This model has the merits of reducing complicated fitting procedures and saving computation time compared with the Preisach model.