The main objective of this work was to develop a kinetic model to describe the variation of the surface tension in an air-water interface due to the adsorption of proteins from different origins and to identify quanti...The main objective of this work was to develop a kinetic model to describe the variation of the surface tension in an air-water interface due to the adsorption of proteins from different origins and to identify quantitatively the relevant parameters, it was considered that the processes of adsorption, unfolding and reordering of the protein molecule in the interface occur simultaneously. The model used in the present work to calculate the surface tension postulates the existence of two simultaneous processes, adsorption and protein rearrangement represented with an equation of first order with two exponential components. The relevant parameter of the equation are ka and kr-the rate constants of the two first order kinetic phases that correspond to both conformational states of the protein, adsorption and rearrangement during the process of variation of the surface tension, and the amplitude parameters Aa and Ar. The results suggest that the kinetic model for the variation of the surface tension of protein solutions proposed in this work, with two simultaneous first order processes, is more appropriate than previous models to describe such variation.展开更多
Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be ...Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be neglected were analyzed in this work. Drops passing the turbulent vicinity of a single stirrer blade were investi- gated by high-speed imaging. In order to gain a statistically relevant amount of drops passing the area of interest and corresponding breakage events, at least 1600 droplets were considered for each parameter set of this work. A specially developed fully automatic image analysis based on Matlab was used for the evaluation of the resulting high amount of image data. This allowed the elimination of the time-consuming manual analysis and further- more, allowed the objective evaluation of the drops' behavior. Different deformation parameters were consid- ered in order to describe the drop deformation dynamics properly. Regarding the ratio of both main particle axes (0axes), which was therefore approximated through an ellipse, allowed the determination of very small de- viations from the spherical shape. The perimeter of the particle (0peri) was used for the description of highly de- formed shapes. In this work the results of a higher viscosity paraffin oil (ηd =127 mPa. s) and a low viscosity solvent (petroleum, ηd = 1.7 mPa-s) are presented with and without the addition of SDS to the continuous water phase. All results show that the experimentally determined oscillation but also deformation times underlie a wide spreading. Drop deformations significantly increased not only with increasing droplet viscosity, but also with decreasing interfacial tension. Highly deformed particles of one droplet species were more likely to break than more or less spherical particles. As droplet fragmentation results from a variety of different macro-scale de- formed particles, it is not assumed that a critical deformation value must be reached for the fragmentation pro- cess to occur. Especially for highly deformed particles thin particle filaments are assumed to induce the breakage process and, therefore, be responsible for the separation of drops.展开更多
文摘The main objective of this work was to develop a kinetic model to describe the variation of the surface tension in an air-water interface due to the adsorption of proteins from different origins and to identify quantitatively the relevant parameters, it was considered that the processes of adsorption, unfolding and reordering of the protein molecule in the interface occur simultaneously. The model used in the present work to calculate the surface tension postulates the existence of two simultaneous processes, adsorption and protein rearrangement represented with an equation of first order with two exponential components. The relevant parameter of the equation are ka and kr-the rate constants of the two first order kinetic phases that correspond to both conformational states of the protein, adsorption and rearrangement during the process of variation of the surface tension, and the amplitude parameters Aa and Ar. The results suggest that the kinetic model for the variation of the surface tension of protein solutions proposed in this work, with two simultaneous first order processes, is more appropriate than previous models to describe such variation.
基金supported by the German Research Foundation (DFG) within the project "Modelling,Simulation,and Control of Drop Size Distributions in Stirred Liquid/liquid Systems - KR1639/15-1"the "Max-Buchner-Forschungsstiftung"
文摘Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be neglected were analyzed in this work. Drops passing the turbulent vicinity of a single stirrer blade were investi- gated by high-speed imaging. In order to gain a statistically relevant amount of drops passing the area of interest and corresponding breakage events, at least 1600 droplets were considered for each parameter set of this work. A specially developed fully automatic image analysis based on Matlab was used for the evaluation of the resulting high amount of image data. This allowed the elimination of the time-consuming manual analysis and further- more, allowed the objective evaluation of the drops' behavior. Different deformation parameters were consid- ered in order to describe the drop deformation dynamics properly. Regarding the ratio of both main particle axes (0axes), which was therefore approximated through an ellipse, allowed the determination of very small de- viations from the spherical shape. The perimeter of the particle (0peri) was used for the description of highly de- formed shapes. In this work the results of a higher viscosity paraffin oil (ηd =127 mPa. s) and a low viscosity solvent (petroleum, ηd = 1.7 mPa-s) are presented with and without the addition of SDS to the continuous water phase. All results show that the experimentally determined oscillation but also deformation times underlie a wide spreading. Drop deformations significantly increased not only with increasing droplet viscosity, but also with decreasing interfacial tension. Highly deformed particles of one droplet species were more likely to break than more or less spherical particles. As droplet fragmentation results from a variety of different macro-scale de- formed particles, it is not assumed that a critical deformation value must be reached for the fragmentation pro- cess to occur. Especially for highly deformed particles thin particle filaments are assumed to induce the breakage process and, therefore, be responsible for the separation of drops.