A 2-D laminar flow model was established for CFD analysis of air-flow between louvered fins. Two louvered fins are studied based on commercial software FLUENT. Air-flow pressure drop characteristics are derived on the...A 2-D laminar flow model was established for CFD analysis of air-flow between louvered fins. Two louvered fins are studied based on commercial software FLUENT. Air-flow pressure drop characteristics are derived on the calculation of Reynolds number from 75.3 to 600. The numerical results are in good agreement with the experimental data when Reynolds is lower.展开更多
Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enh...Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enhanced thermo-hydraulic performance. Thermo-hydraulic design of CHEs (Compact heat exchangers) is strongly dependent upon the predicted/measured dimensionless performance (Colburnj factor and Fanning friction vs. Reynolds number) of heat transfer surfaces. This paper describes the numerical analysis to study the heat transfer coefficient and friction factor of Serrated fins in water medium. CFD (Computational fluid dynamics) methodology has been used to develop the single phase water heat transfer coefficient and friction factor correlations for serrated fins using ANSYS Fluent 14.5. The results are compared with previous air-cooled models and experimental results of water. The water cooled CFD analysis results shows that the Prandtl number has a large effect on the Nusselt number of the serrated fin geometry. Finally, the generalized correlations are developed for serrated fins taking all geometrical parameters into account. This numerical estimation can reduce the number of tests/experiments to a minimum for similar applications.展开更多
Factors on degradation of chlorothalonil(CLT) in water by high frequency ultrasonic irradiation were investigated.The effects of initial concentration of chlorothalonil,dosages of tertiary butyl alcohol,humic acid and...Factors on degradation of chlorothalonil(CLT) in water by high frequency ultrasonic irradiation were investigated.The effects of initial concentration of chlorothalonil,dosages of tertiary butyl alcohol,humic acid and initial pH value on degradation of chlorothalonil,as well as the reaction mechanism were studied.The results reveal that chlorothalonil could be effectively degradated by ultrasonic irradiation.The reaction constant value kapp decreased from 0.014 1 to 0.010 2 min-1 with the initial concentration increasing from 50 to 400 μg/L during 180 min irradiation.Tertiary butyl alcohol had negative effect on chlorothalonil degradation,while lower concentration of humic acid promoted the sonolysis,and kapp declined with the further concentration increasing.The kapp varied little when the pH value ranged from 3.10 to 10.28.It may be concluded that mechanical and pyrolysis process played main roles on the degradation of chlorothalonil in ultrasonic irradiation rather than ·OH attack.The electrical energy per order(EEo) values for sonolysis degradation of CLT were also calculated to evaluate the cost of the process.展开更多
With the arrival of the era of personal auto consumption, residents are enjoying the convenience of travel; however, problems such as environmental protection, transportation, purchasing restriction are plaguing consu...With the arrival of the era of personal auto consumption, residents are enjoying the convenience of travel; however, problems such as environmental protection, transportation, purchasing restriction are plaguing consumers at the same time. As an effective alternative to conventional vehicle, electric vehicle in recent years has been widely concerned due to its characteristics of energy saving and environmental protection. To identify the key influential factors in the development of EV industry in China is conducive to formulating reasonable industrial development strategy and meeting market demand of consumers. In this paper, the key factors in the development of EV industry are obtained by analyzing Baidu Index in each time period.展开更多
文摘A 2-D laminar flow model was established for CFD analysis of air-flow between louvered fins. Two louvered fins are studied based on commercial software FLUENT. Air-flow pressure drop characteristics are derived on the calculation of Reynolds number from 75.3 to 600. The numerical results are in good agreement with the experimental data when Reynolds is lower.
文摘Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enhanced thermo-hydraulic performance. Thermo-hydraulic design of CHEs (Compact heat exchangers) is strongly dependent upon the predicted/measured dimensionless performance (Colburnj factor and Fanning friction vs. Reynolds number) of heat transfer surfaces. This paper describes the numerical analysis to study the heat transfer coefficient and friction factor of Serrated fins in water medium. CFD (Computational fluid dynamics) methodology has been used to develop the single phase water heat transfer coefficient and friction factor correlations for serrated fins using ANSYS Fluent 14.5. The results are compared with previous air-cooled models and experimental results of water. The water cooled CFD analysis results shows that the Prandtl number has a large effect on the Nusselt number of the serrated fin geometry. Finally, the generalized correlations are developed for serrated fins taking all geometrical parameters into account. This numerical estimation can reduce the number of tests/experiments to a minimum for similar applications.
基金Project(2008ZX07421-002) supported by the National Major Project of Science & Technology Ministry of ChinaProject(2008AA06A412) supported by the National High Technology Research and Development Program of ChinaProject(20009-K7-4) supported by the Research and Development of Ministry of Housing and Urban-Rural Development of China
文摘Factors on degradation of chlorothalonil(CLT) in water by high frequency ultrasonic irradiation were investigated.The effects of initial concentration of chlorothalonil,dosages of tertiary butyl alcohol,humic acid and initial pH value on degradation of chlorothalonil,as well as the reaction mechanism were studied.The results reveal that chlorothalonil could be effectively degradated by ultrasonic irradiation.The reaction constant value kapp decreased from 0.014 1 to 0.010 2 min-1 with the initial concentration increasing from 50 to 400 μg/L during 180 min irradiation.Tertiary butyl alcohol had negative effect on chlorothalonil degradation,while lower concentration of humic acid promoted the sonolysis,and kapp declined with the further concentration increasing.The kapp varied little when the pH value ranged from 3.10 to 10.28.It may be concluded that mechanical and pyrolysis process played main roles on the degradation of chlorothalonil in ultrasonic irradiation rather than ·OH attack.The electrical energy per order(EEo) values for sonolysis degradation of CLT were also calculated to evaluate the cost of the process.
文摘With the arrival of the era of personal auto consumption, residents are enjoying the convenience of travel; however, problems such as environmental protection, transportation, purchasing restriction are plaguing consumers at the same time. As an effective alternative to conventional vehicle, electric vehicle in recent years has been widely concerned due to its characteristics of energy saving and environmental protection. To identify the key influential factors in the development of EV industry in China is conducive to formulating reasonable industrial development strategy and meeting market demand of consumers. In this paper, the key factors in the development of EV industry are obtained by analyzing Baidu Index in each time period.