The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytica...The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.展开更多
To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" s...To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" simulation platform was established to carry out fundamental tests on its motion characteristics, stability, and controllability. A motion control strategy consisting of both position and speed control in a horizontal plane was designed for different task assignments of underwater vehicles. Combined control of heave and pitch was adopted to compensate for the reduction of vertical tunnel thrusters when the vehicle is moving at a high speed. An improved S-surface controller based on the capacitor plate model was developed with flexible gain selections made possible by different forms of restricting the error and changing the rate of the error. Simulation results show that the derived general mathematical model together with simulation platform can provide a test bed for fundamental tests of motion control. Additionally, the capacitor plate model S-surface control shows a good performance in guiding the vehicle to achieve the desired position and speed with sufficient accuracy.展开更多
Due to the coexistence and coupling of continuous variables and discrete events, the vehicle height adjustment process of electronic air suspension system can be regarded as a typical hybrid system. Therefore, the hyb...Due to the coexistence and coupling of continuous variables and discrete events, the vehicle height adjustment process of electronic air suspension system can be regarded as a typical hybrid system. Therefore, the hybrid system theory was applied to design a novel vehicle height control strategy in this paper. A nonlinear mechanism model of the vehicle height adjustment system was established based on vehicle system dynamics and thermodynamic theory for variable-mass gas charge/discharge system. In order to model both the continuous/discrete dynamics of vehicle height adjustment process and the on-off statuses switching of solenoid valves, the framework of mixed logical dynamical(MLD) modelling was used. On the basis of the vehicle height adjustment control strategy, the MLD model of the adjustment process was built by introducing auxiliary logical variables and auxiliary continuous variables. Then, the co-simulation of the nonlinear mechanism model and the MLD model was conducted based on the compiling of HYSDEL. The simulation and experimental results show that the proposed control strategy can not only adjust the vehicle height effectively, but also achieve the on-off statuses direct control of solenoid valves.展开更多
基金Project(60873081)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0787)supported by Program for New Century Excellent Talents in UniversityProject(11JJ1012)supported by the Natural Science Foundation of Hunan Province,China
文摘The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.
基金the National Science Foundation under Grant No.50879014,No.50909025
文摘To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" simulation platform was established to carry out fundamental tests on its motion characteristics, stability, and controllability. A motion control strategy consisting of both position and speed control in a horizontal plane was designed for different task assignments of underwater vehicles. Combined control of heave and pitch was adopted to compensate for the reduction of vertical tunnel thrusters when the vehicle is moving at a high speed. An improved S-surface controller based on the capacitor plate model was developed with flexible gain selections made possible by different forms of restricting the error and changing the rate of the error. Simulation results show that the derived general mathematical model together with simulation platform can provide a test bed for fundamental tests of motion control. Additionally, the capacitor plate model S-surface control shows a good performance in guiding the vehicle to achieve the desired position and speed with sufficient accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.51375212 and 51105177)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133227130001)the China Postdoctoral Science Foundation(Grant No.2014M551518)
文摘Due to the coexistence and coupling of continuous variables and discrete events, the vehicle height adjustment process of electronic air suspension system can be regarded as a typical hybrid system. Therefore, the hybrid system theory was applied to design a novel vehicle height control strategy in this paper. A nonlinear mechanism model of the vehicle height adjustment system was established based on vehicle system dynamics and thermodynamic theory for variable-mass gas charge/discharge system. In order to model both the continuous/discrete dynamics of vehicle height adjustment process and the on-off statuses switching of solenoid valves, the framework of mixed logical dynamical(MLD) modelling was used. On the basis of the vehicle height adjustment control strategy, the MLD model of the adjustment process was built by introducing auxiliary logical variables and auxiliary continuous variables. Then, the co-simulation of the nonlinear mechanism model and the MLD model was conducted based on the compiling of HYSDEL. The simulation and experimental results show that the proposed control strategy can not only adjust the vehicle height effectively, but also achieve the on-off statuses direct control of solenoid valves.