A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel e...A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel economy.The actual brake oil pressure of driving wheel which is reduced by the amount of the regenerative braking force is supplied from the electronic hydraulic brake system.Regenerative torque optimization maximizes the actual regenerative power recuperation by energy storage component,and EECB is a useful extended type of regenerative braking.The simulation results show that actual regenerative power recuperation for the novel regenerative braking algorithm is more than using conventional one,and life-span of brake disks is prolonged for the novel algorithm.展开更多
Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different a...Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase V1 wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.展开更多
The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking en...The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.展开更多
In order to regenerate electric power from the vibration excited by road unevenness,a novel energy- regenerative active suspension for vehicles was proposed with the description of its structure and its working princi...In order to regenerate electric power from the vibration excited by road unevenness,a novel energy- regenerative active suspension for vehicles was proposed with the description of its structure and its working principle with two modes switched in different operating conditions.Then,the novel active system was modeled and simulated to show the performance improvement in ride comfort in its electrical motor mode.Finally,the performance tests of the actuator prototype were carried out,which proves its capability for damping in its regenerative braking mode.The research results can provide useful guidance for the similar electrical active suspension design and development.展开更多
As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal cu...As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind,waves,and current,and even the extreme situation of a typhoon.Therefore,the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations.The power station examined in this paper was installed at a depth of 40 m.A 44 mm-diameter R4-RQ4 chain was chosen,with a 2 147 kN minimum break strength and 50 kN pretension.Common studless link chain was used in this paper.Based on the Miner fatigue cumulative damage rule,S-N curves of chains,and MOSES software,a highly reliable mooring system was designed and analyzed.The calculation results show that the mooring system designed is reliable throughout a 10-year period.It can completely meet the design requirements of American Petroleum institution(API).Therefore,the presented research is significant for advancing the design of this kind of power station.展开更多
Effects of welding speed on the microstructure evolution in the stir zone(SZ)and mechanical properties of the friction stir welding(FSW)joints were studied by OM,XRD,SEM,TEM,EBSD and tensile testing.Compared with the ...Effects of welding speed on the microstructure evolution in the stir zone(SZ)and mechanical properties of the friction stir welding(FSW)joints were studied by OM,XRD,SEM,TEM,EBSD and tensile testing.Compared with the base metal(BM),an obviously fine dynamic recrystallization(DRX)microstructure occurs in the SZ and the DRX grain size decreases from 5.6 to 4.4μm with the increasing of welding speed.Fine DRX microstructure is mainly achieved by continuous dynamic recrystallization(CDRX)mechanism,strain induced boundary migration(SIBM)mechanism and particle stimulated nucleation(PSN)mechanism.Meanwhile,the geometric coalescence and the Burke−Turnbull mechanism are the main DRX grain growth mechanisms.Among all the welding speeds,the joint welded at rotation speed of 1500 r/min and welding speed of 75 mm/min has the greatest tensile properties,i.e.ultimate tensile strength(UTS)of(509±2)MPa,yield strength(YS)of(282±4)MPa,elongation(El)of(23±1)%,and the joint efficiency of 73%.展开更多
As outdoor sports are loved by more and more people, the introduction of outdoor sports to the EE. teaching practice plays a positive role in enriching the contents of student sports activities. In this paper, the mea...As outdoor sports are loved by more and more people, the introduction of outdoor sports to the EE. teaching practice plays a positive role in enriching the contents of student sports activities. In this paper, the meanings and characteristics of outdoor sports are introduced, the necessities for the outdoor RE. teaching practice are analyzed, and finally several suggestions on the construction of the outdoor teaching practice in physical education are proposed.展开更多
In recent years, against a background of an environmental problem and resource problem, the introduction of RES (renewable energy source) such as wind power generation and PV (photovoltaic generation), EV (electr...In recent years, against a background of an environmental problem and resource problem, the introduction of RES (renewable energy source) such as wind power generation and PV (photovoltaic generation), EV (electric vehicle), and PHEV (Plug-in hybrid electric vehicle) has been expanding. However, various problems have an ongoing discussion. When the production of electricity by RESs exceeds the power consumption, it is possible to cause a steep variation of point voltage and a deviation from a proper voltage range in a distribution system to which RESs are interconnected. When EVs and PHEVs have spread to the distribution system, a new peak power-demand and a steep voltage drop might occur in the midnight charging time zone in case the electricity charges are low. in this paper, the authors analyze the effects on the distribution system under widespread PVs, EVs, and PHEVs. In addition, the authors propose an improvement plan and analyze about the influence and contribution.展开更多
This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources an...This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.展开更多
In the small country of Ecuador, all environmental risks of the production and consumption of fossil fuels can be observed by damages through oil exploration in the amazonite rainforest and two tank ship accidents clo...In the small country of Ecuador, all environmental risks of the production and consumption of fossil fuels can be observed by damages through oil exploration in the amazonite rainforest and two tank ship accidents close by Galapagos Islands causing death of 10,000 marine iguanas and other species. Now Ecuador plans to replace all environmentally dangerous diesel generators from all four inhabited Galapagos Islands by a hybrid system using 100% renewable energy for electricity production. Since 2010 a hybrid system of two Jatropha oil generators with an electrical power of 69 kW (kWel) and a photovoltaic plant with an electrical peak power of 21 kW (kWpeak) is successfully providing electricity from renewable energy for inhabitants and tourists of Floreana Island. After more than 15.000 engine operation hours of each engine there is no engine defect. For fuel supply, the so-called "Living Fence" concept collecting Jatropha seeds by farmers and families from already existing 6,000 km hedges on Ecuadorian mainland was chosen to comply with highest biofuel sustainability standards. The Jatropha oil is produced in a decentralized so-called CompacTropha oil mill container following the ambitious German fuel quality standard DIN51605. Since 2010 Floreana project successfully demonstrates that it is possible to replace diesel gen sets by generators fueled with pure Jatropha oil from decentralized sustainable production.展开更多
To extend electric vehicle (EV) running distance, the vehicle energy regeneration (ER) method and vehicle control strategy were designed based on the original vehicle braking system. The ER principle of direct current...To extend electric vehicle (EV) running distance, the vehicle energy regeneration (ER) method and vehicle control strategy were designed based on the original vehicle braking system. The ER principle of direct current (DC) brushless motor was studied, the motor mathematical model and PI control method with torque close-loop were built. This control method was applied to pure EV and the real road tests were evaluated. The ER control does not make any significant uncomfortable influence brake feeling and can save about 10% battery energy based on 3 times economic commission for Europe (ECE) driving cycles.展开更多
The limited regenerative capacity of several organs, such as central nervous system(CNS), heart and limb in mammals makes related major diseases quite difficult to recover. Therefore, dissection of the cellular and mo...The limited regenerative capacity of several organs, such as central nervous system(CNS), heart and limb in mammals makes related major diseases quite difficult to recover. Therefore, dissection of the cellular and molecular mechanisms underlying organ regeneration is of great scientific and clinical interests. Tremendous progression has already been made after extensive investigations using several model organisms for decades. Unfortunately, distance to the final achievement of the goal still remains. Recently, zebrafish became a popular model organism for the deep understanding of regeneration based on its powerful regenerative capacity, in particular the organs that are limitedly regenerated in mammals. Additionally, zebrafish are endowed with other advantages good for the study of organ regeneration. This review summarizes the recent progress in the study of zebrafish organ regeneration, in particular regeneration of fin, heart, CNS, and liver as the representatives. We also discuss reasons of the reduced regenerative capacity in higher vertebrate, the roles of inflammation during regeneration, and the difference between organogenesis and regeneration.展开更多
基金The National Hi-Tech Research and Development Program(863)of China(No.2002AA501700No.2003AA501012)
文摘A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel economy.The actual brake oil pressure of driving wheel which is reduced by the amount of the regenerative braking force is supplied from the electronic hydraulic brake system.Regenerative torque optimization maximizes the actual regenerative power recuperation by energy storage component,and EECB is a useful extended type of regenerative braking.The simulation results show that actual regenerative power recuperation for the novel regenerative braking algorithm is more than using conventional one,and life-span of brake disks is prolonged for the novel algorithm.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 51379125, 51411130131, 11432009), the National Key Basic Research Development Plan (973 Plan) Project of China (Grant No. 2013CB036103), High Technology of Marine Research Project of the Ministry of Industry and Information Technology of China, ABS(China), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant No. 2013022).
文摘Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase V1 wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.
基金The National Natural Science Foundation of China(No.50575141)
文摘In order to regenerate electric power from the vibration excited by road unevenness,a novel energy- regenerative active suspension for vehicles was proposed with the description of its structure and its working principle with two modes switched in different operating conditions.Then,the novel active system was modeled and simulated to show the performance improvement in ride comfort in its electrical motor mode.Finally,the performance tests of the actuator prototype were carried out,which proves its capability for damping in its regenerative braking mode.The research results can provide useful guidance for the similar electrical active suspension design and development.
基金Supported by the National "863" Program (Grant No.2007AA05Z450)the National S&T Program (Grant No.2008BAA15B04)+2 种基金2010 Ocean Special Funds (Grant No. ZJME2010GC01, No. ZJME2010CY01)Fundamental Research Funds for the Central Universities (GK2010260106)"111 Project" Foundation (Grant No. B07019) from State Administration of Foreign Experts Affairs of China and Ministry of Education of China
文摘As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind,waves,and current,and even the extreme situation of a typhoon.Therefore,the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations.The power station examined in this paper was installed at a depth of 40 m.A 44 mm-diameter R4-RQ4 chain was chosen,with a 2 147 kN minimum break strength and 50 kN pretension.Common studless link chain was used in this paper.Based on the Miner fatigue cumulative damage rule,S-N curves of chains,and MOSES software,a highly reliable mooring system was designed and analyzed.The calculation results show that the mooring system designed is reliable throughout a 10-year period.It can completely meet the design requirements of American Petroleum institution(API).Therefore,the presented research is significant for advancing the design of this kind of power station.
文摘Effects of welding speed on the microstructure evolution in the stir zone(SZ)and mechanical properties of the friction stir welding(FSW)joints were studied by OM,XRD,SEM,TEM,EBSD and tensile testing.Compared with the base metal(BM),an obviously fine dynamic recrystallization(DRX)microstructure occurs in the SZ and the DRX grain size decreases from 5.6 to 4.4μm with the increasing of welding speed.Fine DRX microstructure is mainly achieved by continuous dynamic recrystallization(CDRX)mechanism,strain induced boundary migration(SIBM)mechanism and particle stimulated nucleation(PSN)mechanism.Meanwhile,the geometric coalescence and the Burke−Turnbull mechanism are the main DRX grain growth mechanisms.Among all the welding speeds,the joint welded at rotation speed of 1500 r/min and welding speed of 75 mm/min has the greatest tensile properties,i.e.ultimate tensile strength(UTS)of(509±2)MPa,yield strength(YS)of(282±4)MPa,elongation(El)of(23±1)%,and the joint efficiency of 73%.
文摘As outdoor sports are loved by more and more people, the introduction of outdoor sports to the EE. teaching practice plays a positive role in enriching the contents of student sports activities. In this paper, the meanings and characteristics of outdoor sports are introduced, the necessities for the outdoor RE. teaching practice are analyzed, and finally several suggestions on the construction of the outdoor teaching practice in physical education are proposed.
文摘In recent years, against a background of an environmental problem and resource problem, the introduction of RES (renewable energy source) such as wind power generation and PV (photovoltaic generation), EV (electric vehicle), and PHEV (Plug-in hybrid electric vehicle) has been expanding. However, various problems have an ongoing discussion. When the production of electricity by RESs exceeds the power consumption, it is possible to cause a steep variation of point voltage and a deviation from a proper voltage range in a distribution system to which RESs are interconnected. When EVs and PHEVs have spread to the distribution system, a new peak power-demand and a steep voltage drop might occur in the midnight charging time zone in case the electricity charges are low. in this paper, the authors analyze the effects on the distribution system under widespread PVs, EVs, and PHEVs. In addition, the authors propose an improvement plan and analyze about the influence and contribution.
文摘This paper proposes an optimal configuration of the distributed hybrid renewable generations based on the stand-alone micro-grid system, considering the diesel as the main control source. Due to the natural sources and load of user changes randomly and the non-tinearity of the power output by renewable generations, an intelligent optimization method based on the improvement of the genetic algorithm and the control strategy are discussed. The instance analysis is compared with the optimization result of the hybrid system based on HOMER (hybrid optimization of multiple energy resources) and GA (genetic algorithm) method on Matlab software. The simulation result of the optimal configuration showed the new hybrid renewable system and would improve the power supply situation which decreased the cost of energy greatly compared with the conventional form of power supply system which was operated only by diesel. The conclusion of the comparing result between HOMER and GA method shows the advantages of the strategy for the diesel as main control sources.
文摘In the small country of Ecuador, all environmental risks of the production and consumption of fossil fuels can be observed by damages through oil exploration in the amazonite rainforest and two tank ship accidents close by Galapagos Islands causing death of 10,000 marine iguanas and other species. Now Ecuador plans to replace all environmentally dangerous diesel generators from all four inhabited Galapagos Islands by a hybrid system using 100% renewable energy for electricity production. Since 2010 a hybrid system of two Jatropha oil generators with an electrical power of 69 kW (kWel) and a photovoltaic plant with an electrical peak power of 21 kW (kWpeak) is successfully providing electricity from renewable energy for inhabitants and tourists of Floreana Island. After more than 15.000 engine operation hours of each engine there is no engine defect. For fuel supply, the so-called "Living Fence" concept collecting Jatropha seeds by farmers and families from already existing 6,000 km hedges on Ecuadorian mainland was chosen to comply with highest biofuel sustainability standards. The Jatropha oil is produced in a decentralized so-called CompacTropha oil mill container following the ambitious German fuel quality standard DIN51605. Since 2010 Floreana project successfully demonstrates that it is possible to replace diesel gen sets by generators fueled with pure Jatropha oil from decentralized sustainable production.
基金the National High Technology Research and Development Program (863) of China (No.2002AA501700)
文摘To extend electric vehicle (EV) running distance, the vehicle energy regeneration (ER) method and vehicle control strategy were designed based on the original vehicle braking system. The ER principle of direct current (DC) brushless motor was studied, the motor mathematical model and PI control method with torque close-loop were built. This control method was applied to pure EV and the real road tests were evaluated. The ER control does not make any significant uncomfortable influence brake feeling and can save about 10% battery energy based on 3 times economic commission for Europe (ECE) driving cycles.
文摘The limited regenerative capacity of several organs, such as central nervous system(CNS), heart and limb in mammals makes related major diseases quite difficult to recover. Therefore, dissection of the cellular and molecular mechanisms underlying organ regeneration is of great scientific and clinical interests. Tremendous progression has already been made after extensive investigations using several model organisms for decades. Unfortunately, distance to the final achievement of the goal still remains. Recently, zebrafish became a popular model organism for the deep understanding of regeneration based on its powerful regenerative capacity, in particular the organs that are limitedly regenerated in mammals. Additionally, zebrafish are endowed with other advantages good for the study of organ regeneration. This review summarizes the recent progress in the study of zebrafish organ regeneration, in particular regeneration of fin, heart, CNS, and liver as the representatives. We also discuss reasons of the reduced regenerative capacity in higher vertebrate, the roles of inflammation during regeneration, and the difference between organogenesis and regeneration.