The dynamic mechanical properties of basalt affected by microwave were investigated by performing dynamic compressive tests using the SHPB system.Meanwhile,the thermal damage of the treated basalt was characterized by...The dynamic mechanical properties of basalt affected by microwave were investigated by performing dynamic compressive tests using the SHPB system.Meanwhile,the thermal damage of the treated basalt was characterized by ultrasonic non-destructive testing and nuclear magnetic resonance technology.The results show that with the increase of microwave power and exposure time,the P-wave velocity,dynamic compressive strength and elastic modulus decrease continuously,and the dynamic failure mode tends to be a more complex fracturing.The increase in microwave power and exposure time can enhance the temperature difference and transfer coefficient among minerals,hence intensifying the rock damage induced by thermal shock.展开更多
An experimental study is conducted to improve an aft-loaded ultra-high-lift low pressure turbine(LPT) blade at low Reynolds number(Re) in steady state. The objective is to investigate the effect of blade roughness on ...An experimental study is conducted to improve an aft-loaded ultra-high-lift low pressure turbine(LPT) blade at low Reynolds number(Re) in steady state. The objective is to investigate the effect of blade roughness on the performance of LPT blade. The roughness is used as a passive flow control method which is to reduce total pressure loss and expand LPT operating margin. The experiment is performed on a low-speed cascade facility. 3 roughness heights and 3 deposit positions are investigated in the experiment which forms a large test matrix. A three-hole probe is used to detect flow aerodynamic performance and a hotwire probe is used to detect the characteristic of suction boundary layer. Regional roughness can suppress separation loss and bring fairly low turbulent dissipation loss. Detailed surveys near the blade surface shows that the loss reduction is due to the disappearance of separation bubble from the early transition onset.展开更多
The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance.This paper presents new pressure losses models which can be included in a one dimen...The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance.This paper presents new pressure losses models which can be included in a one dimensional engine simulation code.In a first part,a CFD analysis is made in order to show the importance of the density in the modeling approach.Then,the CFD code is used,as a numerical test bench,for the pressure losses models development.These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench.All the models are then included in the engine simulation code of the laboratory.The numerical calculation of unsteady compressible flow,in each pipe of the inlet and exhaust systems,is made and the calculated engine torque is compared with experimental measurements.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51774325,41972283,11972378).
文摘The dynamic mechanical properties of basalt affected by microwave were investigated by performing dynamic compressive tests using the SHPB system.Meanwhile,the thermal damage of the treated basalt was characterized by ultrasonic non-destructive testing and nuclear magnetic resonance technology.The results show that with the increase of microwave power and exposure time,the P-wave velocity,dynamic compressive strength and elastic modulus decrease continuously,and the dynamic failure mode tends to be a more complex fracturing.The increase in microwave power and exposure time can enhance the temperature difference and transfer coefficient among minerals,hence intensifying the rock damage induced by thermal shock.
基金Supported by National Natural Science Foundation of China(51206163 and 51306176)International S&T Cooperation Program of China,Project No.2013DFR61080
文摘An experimental study is conducted to improve an aft-loaded ultra-high-lift low pressure turbine(LPT) blade at low Reynolds number(Re) in steady state. The objective is to investigate the effect of blade roughness on the performance of LPT blade. The roughness is used as a passive flow control method which is to reduce total pressure loss and expand LPT operating margin. The experiment is performed on a low-speed cascade facility. 3 roughness heights and 3 deposit positions are investigated in the experiment which forms a large test matrix. A three-hole probe is used to detect flow aerodynamic performance and a hotwire probe is used to detect the characteristic of suction boundary layer. Regional roughness can suppress separation loss and bring fairly low turbulent dissipation loss. Detailed surveys near the blade surface shows that the loss reduction is due to the disappearance of separation bubble from the early transition onset.
文摘The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance.This paper presents new pressure losses models which can be included in a one dimensional engine simulation code.In a first part,a CFD analysis is made in order to show the importance of the density in the modeling approach.Then,the CFD code is used,as a numerical test bench,for the pressure losses models development.These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench.All the models are then included in the engine simulation code of the laboratory.The numerical calculation of unsteady compressible flow,in each pipe of the inlet and exhaust systems,is made and the calculated engine torque is compared with experimental measurements.