期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
“智能经济”还有多远?——中国AI落地的动能瓶颈与创新发展战略探析 被引量:6
1
作者 张枭 《宁夏社会科学》 CSSCI 2020年第6期108-117,共10页
人工智能是高质量发展的核心动能,但近年来中国AI落地困难重重,探析其动能瓶颈与发展战略至关重要。基于AI层级结构、边际报酬递增规律可建构智能经济均衡模型。分析发现:智能经济赢者通吃特征显著,进入并垄断全球高潜在需求市场成为可... 人工智能是高质量发展的核心动能,但近年来中国AI落地困难重重,探析其动能瓶颈与发展战略至关重要。基于AI层级结构、边际报酬递增规律可建构智能经济均衡模型。分析发现:智能经济赢者通吃特征显著,进入并垄断全球高潜在需求市场成为可持续发展的关键。而中国AI因新旧动能所限,深陷国内智能消费场景层价值链低端,遭遇企业投资锐减、数字经济吞噬、国内需求疲软、外部压制升级与调控政策偏离五大瓶颈,基础支持层面的国家投资、数字经济赋能、智造需求激发、全球市场垄断、政策导向由传统高体量增长转向高质量发展势在必行。 展开更多
关键词 人工智能 AI落地 智能经济模型 动能瓶颈 创新发展战略
下载PDF
Fast Multi-Pattern Matching Algorithm on Compressed Network Traffic 被引量:2
2
作者 Hao Peng Jianxin Li +1 位作者 Bo Li M.Hassan Arif 《China Communications》 SCIE CSCD 2016年第5期141-150,共10页
Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck ... Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s. 展开更多
关键词 compressed network traffic network security multiple pattern matching skip scanning depth of boundary
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部