期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
劳动技术校本课程中的“动手做、动脑想”——“叶脉书签”的一些心得与反思
1
作者 李弘 魏晓巍 《名师在线》 2017年第22期43-44,共2页
劳动技术是中学日常教学活动中必不可少的一门学科,因为牵涉大量的动手实践活动而深受学生的喜爱,在动手的过程中不仅能锻炼学生的动手能力,有效提高学生分析问题与解决问题的能力,还能让学生得到自我价值的认同。正因如此,我校开发了... 劳动技术是中学日常教学活动中必不可少的一门学科,因为牵涉大量的动手实践活动而深受学生的喜爱,在动手的过程中不仅能锻炼学生的动手能力,有效提高学生分析问题与解决问题的能力,还能让学生得到自我价值的认同。正因如此,我校开发了一系列的劳动技术与学科知识相结合的校本课程。这些校本课程不仅让学生在动手实践过程中学到相关知识,还让学生学到了分析问题与解决问题的一些技巧,改变了劳动技术课只是一味地让学生动手操作而忽略动脑过程的传统模式,真正地让学生'动手做、动脑想'。 展开更多
关键词 技术 叶脉书签 动脑想 手做
下载PDF
Pseudo channel:time embedding for motor imagery decoding
2
作者 MIAO Zhengqing ZHAO Meirong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期308-317,共10页
Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,te... Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,termed traveling-wave based time embedding,utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures.Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference,our approach captures time-related changes for different participants based on a priori knowledge.Through extensive experimentation with multiple participants,we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture.Significantly,our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy,particularly for participants typically considered“EEG-illiteracy”.As a novel direction in EEG research,the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals. 展开更多
关键词 motor imagery(MI) pseudo channel electroencephalogram(EEG) neural networks
下载PDF
Classification of EEG-based single-trial motor imagery tasks using a B-CSP method for BCI 被引量:5
3
作者 Zhi-chuan TANG Chao LI +2 位作者 Jian-feng WU Peng-cheng LIU Shi-wei CHENG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第8期1087-1099,共13页
Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,th... Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,the low signal-to-noise ratio and individual differences of EEG can affect the classification results negatively.In this paper,we propose an improved common spatial pattern(B-CSP)method to extract features for alleviating these adverse effects.First,for different subjects,the method of Bhattacharyya distance is used to select the optimal frequency band of each electrode including strong event-related desynchronization(ERD)and event-related synchronization(ERS)patterns;then the signals of the optimal frequency band are decomposed into spatial patterns,and the features that can describe the maximum differences of two classes of MI are extracted from the EEG data.The proposed method is applied to the public data set and experimental data set to extract features which are input into a back propagation neural network(BPNN)classifier to classify single-trial MI EEG.Another two conventional feature extraction methods,original common spatial pattern(CSP)and autoregressive(AR),are used for comparison.An improved classification performance for both data sets(public data set:91.25%±1.77%for left hand vs.foot and84.50%±5.42%for left hand vs.right hand;experimental data set:90.43%±4.26%for left hand vs.foot)verifies the advantages of the B-CSP method over conventional methods.The results demonstrate that our proposed B-CSP method can classify EEG-based MI tasks effectively,and this study provides practical and theoretical approaches to BCI applications. 展开更多
关键词 Electroencephalogram(EEG) Motor imagery(MI) Improved common spatial pattern(B-CSP) Feature extraction CLASSIFICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部