Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The...Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The correlations between traffic flows and totals of benzene and toluene were studied during the period of vehicular traffic restrictions from August 17 to August 20 and non-traffic restrictions on August 16 and August 21. The correlation coef- ficient was 0.8 between benzene and toluene. And the calculated daily mean value ratios of benzene to toluene were 0.43-0.50. During the period of vehicular restrictions, traffic flows were reduced about 11.8% and the levels of benzene and toluene were reduced by 11.4% and 12.8%, respectively. The vehicle emissions were recognized as the major sources for atmospheric benzene and toluene in Beijing.展开更多
This paper investigates the passing events between electric bicycles and conventional bicycles and explores the relationships between passing events and traffic parameters in bicycle facilities.Three exclusive bicycle...This paper investigates the passing events between electric bicycles and conventional bicycles and explores the relationships between passing events and traffic parameters in bicycle facilities.Three exclusive bicycle paths in Nanjing, China,were observed with cameras.Then,the field data including vehicle number,velocity characteristics and passing event features were analyzed in detail.Data analysis and fitting reveal that the speed difference has little impact on the passing event number,as does the bicycle ratio.The Gaussian function can better describe the relationship between the passing event number and bicycle volume (density).The valid use level of bicycle path width influences the inflexion of the passing events-density fitting curve.The conclusions can be applied for estimating the passing events in mixed bicycle flows and for choosing a suitable width of separate bicycle path.展开更多
Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusi...Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.展开更多
A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of...A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of eight vehicles coupled with a ballasted track. The vehicle is modeled as a multi-body system, and the rail is modeled with a Timoshenko beam resting on the discrete sleepers. The vehicle model considers the effect of the end connections of the neighboring vehicles on the dynamic behavior. The track model takes into account the lateral, vertical, and torsional deformations of the rails and the effect of the discrete sleeper support on the coupling dynamics of the vehicles and the track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. The train model couples with the track model by using a Hertzian contact model for the wheel/rail normal force calculation, and the nonlinear creep theory by Shen et al. (1984) is used for wheel/rail tangent force calculation. In the analysis, a curved track of 7000-m radius with failed fasteners is selected, and the effects of train operational speed and the number of failed fasteners on the dynamic behaviors of the train and the track are investigated in detail. Furthermore, the wheel/rail forces and derailment coefficient and the wheelset loading reduction are analyzed when the high-speed train passes over the curved track with the different number of continuously failed fasteners at different operational speeds. Through the detailed numerical analysis, it is found that the high-speed train can operate normally on the curved track of 7000-m radius at the speeds of 200 km/h to 350 km/h.展开更多
Objective: To analyze the crash and injury data in forensic medicine for years of 2004-2007. Methods: A sample of over 567 accident cases (9 pedestrians, 116 bicyclists, and 442 motor vehicle occupants) was consi...Objective: To analyze the crash and injury data in forensic medicine for years of 2004-2007. Methods: A sample of over 567 accident cases (9 pedestrians, 116 bicyclists, and 442 motor vehicle occupants) was considered from the Department of Forensic Medicine, Shahid Bahonar University of Kerman, involving drivers of all ages and covering a four-year period. Results: The male fatality rates were significantly higher than female ones. The groups at 15-30 years old and at 30-55 years old had the first and second highest numbers of deaths (40% and 34%, respectively). There were substantial differences in distribution of injuries in motor vehicle occupants and pedestrians and bicyclists. Among motor vehicle occupants, there were more head injuries, such as skull fracture, brain contusion, subdural haemorrhage, and epidural haemorrhage. Nearly 77% of fatalities occurred during 08:00-22:00 in Sirjan. Internal bleeding was also higher in motor vehicle occupants. Pedestrians and bicyclists also had head injuries frequently. Conclusions: In spite of reduction of road traffic fatalities in Sirjan in 2007, it is still one of the cities with high road traffic fatality in the world. These results underline the importance of preventive strategies in transportation, suggesting that different methods are necessary to reduce fatalities of various traffic participants.展开更多
With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train ...With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%.展开更多
High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the env...High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the environment wind appears,crosswind effects must be considered.Aerodynamic design of high-speed trains mainly aims at the drag,lift,moment,impulse pressure waves,aerodynamic noise,etc.at typical running conditions.In the paper,the aerodynamic design processes of CRH380A and 380B are introduced and the aerodynamic performances of different designs are analyzed and compared.Wind tunnel experiments and running tests indicate that the new generation of high-speed trains have excellent aerodynamic performances.展开更多
With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric a...With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric approach called local shape function(LSF) was adopted based on the free form surface deformation(FFD) method and a new efficient optimization method based on the response surface method(RSM) of GA-GRNN.The optimization results show that the parametric method can control the large deformation with a few design parameters,and can ensure the deformation zones smoothness and smooth transition of different deformation regions.With the same sample points for training,GA-GRNN performs better than GRNN to get the global optimal solution.As an example,the aerodynamic drag for a simplified shape with head + one carriage + tail train is reduced by 8.7%.The proposed optimization method is efficient for the engineering design of high-speed train.展开更多
When the subway train operates at a speed higher than 100 km/h,the corresponding aerodynamic issue becomes severe.To meet the future requirement for the speedup of subway trains,a research on the critical diameters of...When the subway train operates at a speed higher than 100 km/h,the corresponding aerodynamic issue becomes severe.To meet the future requirement for the speedup of subway trains,a research on the critical diameters of the subway tunnel for trains operating at 120 and 140 km/h has been performed based on passengers’aural discomfort caused by rail tunnel pressure variation.A three-dimensional computational fluid dynamic approach has been adopted for analysis.Meanwhile,trains with different airtight indices are considered and the pressure variations inside and outside the trains are both under investigation.Based on the corresponding criteria for different airtight indices,critical tunnel diameters for trains running at different speeds have been determined.This study would aid in the tunnel section design for future high-speed subway trains.展开更多
文摘Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The correlations between traffic flows and totals of benzene and toluene were studied during the period of vehicular traffic restrictions from August 17 to August 20 and non-traffic restrictions on August 16 and August 21. The correlation coef- ficient was 0.8 between benzene and toluene. And the calculated daily mean value ratios of benzene to toluene were 0.43-0.50. During the period of vehicular restrictions, traffic flows were reduced about 11.8% and the levels of benzene and toluene were reduced by 11.4% and 12.8%, respectively. The vehicle emissions were recognized as the major sources for atmospheric benzene and toluene in Beijing.
基金The National Natural Science Foundation of China(No.51238008,51408322)
文摘This paper investigates the passing events between electric bicycles and conventional bicycles and explores the relationships between passing events and traffic parameters in bicycle facilities.Three exclusive bicycle paths in Nanjing, China,were observed with cameras.Then,the field data including vehicle number,velocity characteristics and passing event features were analyzed in detail.Data analysis and fitting reveal that the speed difference has little impact on the passing event number,as does the bicycle ratio.The Gaussian function can better describe the relationship between the passing event number and bicycle volume (density).The valid use level of bicycle path width influences the inflexion of the passing events-density fitting curve.The conclusions can be applied for estimating the passing events in mixed bicycle flows and for choosing a suitable width of separate bicycle path.
基金Project(U1134203)supported by the Major Program of the National Natural Science Foundation of ChinaProject(51105384)supported by the National Natural Science Foundation of China
文摘Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.
基金Project supported by the National Natural Science Foundation of China (No. U1134202)the National Basic Research Program (973) of China (No. 2011CB711103)the Program for Changjiang Scholars and Innovative Research Team in University (Nos. IRT1178and SWJTU12ZT01), China
文摘A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of eight vehicles coupled with a ballasted track. The vehicle is modeled as a multi-body system, and the rail is modeled with a Timoshenko beam resting on the discrete sleepers. The vehicle model considers the effect of the end connections of the neighboring vehicles on the dynamic behavior. The track model takes into account the lateral, vertical, and torsional deformations of the rails and the effect of the discrete sleeper support on the coupling dynamics of the vehicles and the track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. The train model couples with the track model by using a Hertzian contact model for the wheel/rail normal force calculation, and the nonlinear creep theory by Shen et al. (1984) is used for wheel/rail tangent force calculation. In the analysis, a curved track of 7000-m radius with failed fasteners is selected, and the effects of train operational speed and the number of failed fasteners on the dynamic behaviors of the train and the track are investigated in detail. Furthermore, the wheel/rail forces and derailment coefficient and the wheelset loading reduction are analyzed when the high-speed train passes over the curved track with the different number of continuously failed fasteners at different operational speeds. Through the detailed numerical analysis, it is found that the high-speed train can operate normally on the curved track of 7000-m radius at the speeds of 200 km/h to 350 km/h.
文摘Objective: To analyze the crash and injury data in forensic medicine for years of 2004-2007. Methods: A sample of over 567 accident cases (9 pedestrians, 116 bicyclists, and 442 motor vehicle occupants) was considered from the Department of Forensic Medicine, Shahid Bahonar University of Kerman, involving drivers of all ages and covering a four-year period. Results: The male fatality rates were significantly higher than female ones. The groups at 15-30 years old and at 30-55 years old had the first and second highest numbers of deaths (40% and 34%, respectively). There were substantial differences in distribution of injuries in motor vehicle occupants and pedestrians and bicyclists. Among motor vehicle occupants, there were more head injuries, such as skull fracture, brain contusion, subdural haemorrhage, and epidural haemorrhage. Nearly 77% of fatalities occurred during 08:00-22:00 in Sirjan. Internal bleeding was also higher in motor vehicle occupants. Pedestrians and bicyclists also had head injuries frequently. Conclusions: In spite of reduction of road traffic fatalities in Sirjan in 2007, it is still one of the cities with high road traffic fatality in the world. These results underline the importance of preventive strategies in transportation, suggesting that different methods are necessary to reduce fatalities of various traffic participants.
基金Project supported by the National Natural Science Foundation of China (No. 50823004)the National Key Technology R&D Program of China (No. 2009BAG12A01-C09)+1 种基金the 2013 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities, China
文摘With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2011CB711101)the National Hi-Tech Research and Development Program of China ("863" Project)(Grant No. 2009BAQG12A03)
文摘High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the environment wind appears,crosswind effects must be considered.Aerodynamic design of high-speed trains mainly aims at the drag,lift,moment,impulse pressure waves,aerodynamic noise,etc.at typical running conditions.In the paper,the aerodynamic design processes of CRH380A and 380B are introduced and the aerodynamic performances of different designs are analyzed and compared.Wind tunnel experiments and running tests indicate that the new generation of high-speed trains have excellent aerodynamic performances.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB711100)the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No.2009BAQG12A03)Computing Facility for Computational Mechanics,Institute of Mechanics,Chinese Academy of Sciences
文摘With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric approach called local shape function(LSF) was adopted based on the free form surface deformation(FFD) method and a new efficient optimization method based on the response surface method(RSM) of GA-GRNN.The optimization results show that the parametric method can control the large deformation with a few design parameters,and can ensure the deformation zones smoothness and smooth transition of different deformation regions.With the same sample points for training,GA-GRNN performs better than GRNN to get the global optimal solution.As an example,the aerodynamic drag for a simplified shape with head + one carriage + tail train is reduced by 8.7%.The proposed optimization method is efficient for the engineering design of high-speed train.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB711100)the National Natural Science Foundation of China(Grant No.11302233)
文摘When the subway train operates at a speed higher than 100 km/h,the corresponding aerodynamic issue becomes severe.To meet the future requirement for the speedup of subway trains,a research on the critical diameters of the subway tunnel for trains operating at 120 and 140 km/h has been performed based on passengers’aural discomfort caused by rail tunnel pressure variation.A three-dimensional computational fluid dynamic approach has been adopted for analysis.Meanwhile,trains with different airtight indices are considered and the pressure variations inside and outside the trains are both under investigation.Based on the corresponding criteria for different airtight indices,critical tunnel diameters for trains running at different speeds have been determined.This study would aid in the tunnel section design for future high-speed subway trains.