The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment e...The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment element of the slab track was put forward. The spatial vibration equation set of the high-speed train and slab track system was then established on the basis of the principle of total potential energy with stationary value in elastic system dynamics and the rule of "set-in-right-position" for formulating system matrices. The equation set was solved by the Wilson-θ direct integration method. The contents mentioned above constitute the analysis theory of spatial vibration of high-speed train and slab track system. The theory was then verified by the high-speed running experiment carried out on the slab track in the Qinghuangdao-Shenyang passenger transport line. The results show that the calculated results agree well with the measured rcsults, such as the calculated lateral and vertical rail displacements are 0.82 mm and 0.9 mm and the measured ones 0.75 mm and 0.93 mm, respectively; the calculated lateral and vertical wheel-rail forces are 8.9 kN and 102.3 kN and the measured ones 8.6 kN and 80.2 kN, respectively. The interpolation method, that is, the lateral finite strip and slab segment element, for slab deformation proposed is of simplification and applicability compared with the traditional plate element method. All of these demonstrate the reliability of the theory proposed.展开更多
Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demons...Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demonstration application system collection of photovoltaic(PV) grid power,PV off- grid power,EV charging and parking shed,and any part of the functions and their combination will be engaged in practical application on demand. The paper describes the PV shed system structure and design in detail with the present of its actual photos. The shed is 50 m long and 5.5 m wide and capable of parking 18 cars. Under the control of system intellectual controller,the power produced by PV from sunlight will charge the parking EV car prior to charging the storage battery,charging the storage battery prior to grid power,grid power at last,and charge the EV by utility grid when it is a cloudy or rainy day.展开更多
The theory of dynamic vibration absorber(DVA)was applied to restrain the vibration of carbody for high-speed electric multiple unit(EMU).The carbody was modeled as an Euler-Bernoulli beam with the equipment mounted on...The theory of dynamic vibration absorber(DVA)was applied to restrain the vibration of carbody for high-speed electric multiple unit(EMU).The carbody was modeled as an Euler-Bernoulli beam with the equipment mounted on the chassis regarded as a DVA.Suspension parameters of the equipment were optimized based on the modal analysis of the beam and parameter optimization of the DVA.Vertical motion equations of the carbody and equipment were derived to study the effect of the suspension parameters on the vibration of carbody,which included the suspension frequency,damping ratio,mounting position and mass.Then a 3D rigid-flexible coupled vehicle system dynamics model was built to simulate the response of carbody and equipment to track excitation.The results show that the equipment mounted on the carbody chassis can be regarded as a DVA to reduce the flexible vibration of carbody,and the optimum suspension frequency can be calculated theoretically with the first-order vertical bending mode of carbody considered.Heavy equipment should be mounted to the carbody center as close as possible to obtain a significant vibration reduction,while light equipment has quite limited contribution to that.Also,a laboratory test was conducted on the full-scale test rig which shows a good agreement with the theoretical analysis and dynamic simulations.The faster the vehicle runs,the more significant are the advantages of the elastic suspension.展开更多
This paper examines the energy and environmental benefits within the whole life cycle shifting from traditional gasoline vehicles to electrified advanced vehicles under regional real-world driving behaviors. The advan...This paper examines the energy and environmental benefits within the whole life cycle shifting from traditional gasoline vehicles to electrified advanced vehicles under regional real-world driving behaviors. The advance vehicles focus on family passenger cars and include battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). The GREET (greenhouse gases, regulated emissions, and energy use in transportation) model is adopted with regional circumstances modifications, especially the UF (utility factors) of PHEVs. The results show that the electrified vehicles offer great benefits concerning energy consumption, greenhouse gas (GHG) emissions as well as urban Particulate Matter 2,5 (PMz.s) emissions. Compared to conventional gasoline vehicles, the life-cycle total energy reduction for advance vehicles is 51% to 57%. There is little difference on energy reduction among the HEVs, PHEVs and BEVs, with the energy mix shifting from petroleum to coal for the stronger electrification. The reductions of GHG emissions are 57% for HEV, 54% to 48% for PHEVs with 10 miles to 40 miles CD range, and 40% for BEV. The life-cycle and local PM2.5 emissions are discussed separately. The life-cycle PM2.5 emissions increase with vehicle electrification and reach a maximum for the BEV which are 5% higher than the conventional vehicle (CV). However, electric vehicles can shift PM2.5 emissions from vehicle operation to upstream operations and help mitigate PM2.5 emissions in urban areas. The local emissions of PHEVs and BEVs can be reduced by 37% to 81% and 100% compared with CVs.展开更多
基金Project(2007CB714706) supported by the National Basic Research Program of ChinaProject (50678176) supported by the National Natural Science Foundation of ChinaProject(NCET-07-0866) supported by the Program for New Century Excellent Talents in University
文摘The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment element of the slab track was put forward. The spatial vibration equation set of the high-speed train and slab track system was then established on the basis of the principle of total potential energy with stationary value in elastic system dynamics and the rule of "set-in-right-position" for formulating system matrices. The equation set was solved by the Wilson-θ direct integration method. The contents mentioned above constitute the analysis theory of spatial vibration of high-speed train and slab track system. The theory was then verified by the high-speed running experiment carried out on the slab track in the Qinghuangdao-Shenyang passenger transport line. The results show that the calculated results agree well with the measured rcsults, such as the calculated lateral and vertical rail displacements are 0.82 mm and 0.9 mm and the measured ones 0.75 mm and 0.93 mm, respectively; the calculated lateral and vertical wheel-rail forces are 8.9 kN and 102.3 kN and the measured ones 8.6 kN and 80.2 kN, respectively. The interpolation method, that is, the lateral finite strip and slab segment element, for slab deformation proposed is of simplification and applicability compared with the traditional plate element method. All of these demonstrate the reliability of the theory proposed.
基金China Southern Power Grid New Energy Experimental Project(No.03HC0901578)
文摘Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demonstration application system collection of photovoltaic(PV) grid power,PV off- grid power,EV charging and parking shed,and any part of the functions and their combination will be engaged in practical application on demand. The paper describes the PV shed system structure and design in detail with the present of its actual photos. The shed is 50 m long and 5.5 m wide and capable of parking 18 cars. Under the control of system intellectual controller,the power produced by PV from sunlight will charge the parking EV car prior to charging the storage battery,charging the storage battery prior to grid power,grid power at last,and charge the EV by utility grid when it is a cloudy or rainy day.
基金supported by the National Science and Technology Support Program of China(2009BAG12A01-A02)the New Century Excellent Talents of Ministry of Education funded project(NCET-10-0664)+2 种基金the National Natural Science Foundation of China(Grant No.61134002)the National Basic Research Program of China("973"Program)(Grant No.2011CB711106)China Postdoctoral Science Foundation funded project(No:2014M550471)
文摘The theory of dynamic vibration absorber(DVA)was applied to restrain the vibration of carbody for high-speed electric multiple unit(EMU).The carbody was modeled as an Euler-Bernoulli beam with the equipment mounted on the chassis regarded as a DVA.Suspension parameters of the equipment were optimized based on the modal analysis of the beam and parameter optimization of the DVA.Vertical motion equations of the carbody and equipment were derived to study the effect of the suspension parameters on the vibration of carbody,which included the suspension frequency,damping ratio,mounting position and mass.Then a 3D rigid-flexible coupled vehicle system dynamics model was built to simulate the response of carbody and equipment to track excitation.The results show that the equipment mounted on the carbody chassis can be regarded as a DVA to reduce the flexible vibration of carbody,and the optimum suspension frequency can be calculated theoretically with the first-order vertical bending mode of carbody considered.Heavy equipment should be mounted to the carbody center as close as possible to obtain a significant vibration reduction,while light equipment has quite limited contribution to that.Also,a laboratory test was conducted on the full-scale test rig which shows a good agreement with the theoretical analysis and dynamic simulations.The faster the vehicle runs,the more significant are the advantages of the elastic suspension.
基金The Ministry of Science and Technology of China(Grant Nos.2011DFA60650,2012DFA81190,2014DFG71590,2013BAG06B02 and 2013BAG06B04)
文摘This paper examines the energy and environmental benefits within the whole life cycle shifting from traditional gasoline vehicles to electrified advanced vehicles under regional real-world driving behaviors. The advance vehicles focus on family passenger cars and include battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). The GREET (greenhouse gases, regulated emissions, and energy use in transportation) model is adopted with regional circumstances modifications, especially the UF (utility factors) of PHEVs. The results show that the electrified vehicles offer great benefits concerning energy consumption, greenhouse gas (GHG) emissions as well as urban Particulate Matter 2,5 (PMz.s) emissions. Compared to conventional gasoline vehicles, the life-cycle total energy reduction for advance vehicles is 51% to 57%. There is little difference on energy reduction among the HEVs, PHEVs and BEVs, with the energy mix shifting from petroleum to coal for the stronger electrification. The reductions of GHG emissions are 57% for HEV, 54% to 48% for PHEVs with 10 miles to 40 miles CD range, and 40% for BEV. The life-cycle and local PM2.5 emissions are discussed separately. The life-cycle PM2.5 emissions increase with vehicle electrification and reach a maximum for the BEV which are 5% higher than the conventional vehicle (CV). However, electric vehicles can shift PM2.5 emissions from vehicle operation to upstream operations and help mitigate PM2.5 emissions in urban areas. The local emissions of PHEVs and BEVs can be reduced by 37% to 81% and 100% compared with CVs.