期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大型复杂型面动车车头零件快速超塑成形工艺研究
1
作者 杨代立 张开佳 +4 位作者 杜志豪 陈冉冉 周彤旭 王春旭 王国峰 《锻压技术》 CAS CSCD 北大核心 2023年第8期83-89,共7页
以动车车头左前侧壁板为研究对象,对铝合金左前侧壁板的快速超塑成形工艺进行了研究。基于左前侧壁板零件的三维形状,设计了快速超塑成形凸模和凹模,采用凸模成形,以壁板内型面作为凸模主要型面。利用MSC.MARC软件对左前侧壁板的热冲压... 以动车车头左前侧壁板为研究对象,对铝合金左前侧壁板的快速超塑成形工艺进行了研究。基于左前侧壁板零件的三维形状,设计了快速超塑成形凸模和凹模,采用凸模成形,以壁板内型面作为凸模主要型面。利用MSC.MARC软件对左前侧壁板的热冲压、反胀超塑成形和正胀超塑成形阶段进行有限元分析,选择合适的反胀时间以控制反胀厚度,正胀实现零件的最终成形,最薄部位位于零件加工余量处,最大减薄率为21%,局部有聚料现象。之后进行了左前侧壁板快速超塑成形实验,在上端和前端中部有褶皱现象,与有限元分析结果基本吻合,对成形过程进行工艺改进后,成功地制造了表面质量良好的左前侧壁板。最后,对成形后材料的力学性能、零件的厚度分布和形状精度进行了测量。 展开更多
关键词 5083铝合金 左前侧壁板 快速超塑成形 动车车头 最大减薄率
原文传递
Multi-objective optimization design method of the high-speed train head 被引量:22
2
作者 Meng-ge YU Ji-ye ZHANG Wei-hua ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期631-641,共11页
With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train ... With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%. 展开更多
关键词 High-speed train Multi-objective optimization Parametric model Aerodynamic drag Load reduction factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部