In this paper, the mathematical dynamical model of a PEMFC (proton exchange membrane fuel cells) stack, integrated with an automotive synchronous electrical power drive, developed in Matlab environment, is shown. Lo...In this paper, the mathematical dynamical model of a PEMFC (proton exchange membrane fuel cells) stack, integrated with an automotive synchronous electrical power drive, developed in Matlab environment, is shown. Lots of simulations have been executed in many load conditions. In this paper, the load conditions regarding an electrical vehicle for disabled people is reported. The innovation in this field concerns the integration, in the PEMFC stack mathematical dynamic model, of a synchronous electrical power drive for automotive purposes. Goal of the simulator design has been to create an useful tool which is able to evaluate the behaviour of the whole system so as to optimize the components choose. As regards the simulations with a synchronous electrical power drive, the complete mathematical model allows to evaluate the PEMFC stack performances and electrochemical efficiency.展开更多
The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically...The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.展开更多
In the design and optimization of nanocomposites,the surface/interface stress arising at the inhomogeneity-matrix boundary plays an important role in determining the strength of structures.In this paper,the effect of ...In the design and optimization of nanocomposites,the surface/interface stress arising at the inhomogeneity-matrix boundary plays an important role in determining the strength of structures.In this paper,the effect of surface/interface stress on the dynamic stress around a spherical inhomogeneity subjected to asymmetric dynamic loads is investigated.The surface/interface stress effects are taken into account by introducing Gurtin-Murdoch surface/interface elasticity model.The analytical solutions to displacement potentials are expressed by spherical wave function and associated Legendre function.The dynamic stress concentration factors around the spherical nano-inhomogeneity are illustrated and analyzed.The effects of the incident wave number,and the material properties of the interface and inhomogeneity on the dynamic stress around the inhomogeneity are examined.展开更多
文摘In this paper, the mathematical dynamical model of a PEMFC (proton exchange membrane fuel cells) stack, integrated with an automotive synchronous electrical power drive, developed in Matlab environment, is shown. Lots of simulations have been executed in many load conditions. In this paper, the load conditions regarding an electrical vehicle for disabled people is reported. The innovation in this field concerns the integration, in the PEMFC stack mathematical dynamic model, of a synchronous electrical power drive for automotive purposes. Goal of the simulator design has been to create an useful tool which is able to evaluate the behaviour of the whole system so as to optimize the components choose. As regards the simulations with a synchronous electrical power drive, the complete mathematical model allows to evaluate the PEMFC stack performances and electrochemical efficiency.
文摘The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11172185 and 10972147)the Natural Science Foundation of Hebei Province,China (Grant No. A2010001052)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No. IRT0971)
文摘In the design and optimization of nanocomposites,the surface/interface stress arising at the inhomogeneity-matrix boundary plays an important role in determining the strength of structures.In this paper,the effect of surface/interface stress on the dynamic stress around a spherical inhomogeneity subjected to asymmetric dynamic loads is investigated.The surface/interface stress effects are taken into account by introducing Gurtin-Murdoch surface/interface elasticity model.The analytical solutions to displacement potentials are expressed by spherical wave function and associated Legendre function.The dynamic stress concentration factors around the spherical nano-inhomogeneity are illustrated and analyzed.The effects of the incident wave number,and the material properties of the interface and inhomogeneity on the dynamic stress around the inhomogeneity are examined.