The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation...The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.展开更多
In this paper modelling of the translational motion of transportation rail-guided cart with rope suspended payload is considered. The linearly moving cart,driven by a travel mechanism,is modelled as a discrete six deg...In this paper modelling of the translational motion of transportation rail-guided cart with rope suspended payload is considered. The linearly moving cart,driven by a travel mechanism,is modelled as a discrete six degrees of freedom (DOF) dynamic system. The hoisting mechanism for lowering and lifting the payload is considered and is included in the dynamic model as one DOF system. Differential equations of motion of the cart elements are derived using Lagrangian dynamics and are solved for a set of real-life constant parameters of the cart. A two-sided interaction was observed between the swinging payload and the travel mechanism. Results for kinematical and force parameters of the system are obtained. A verification of the proposed model was conducted.展开更多
By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course...By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course of exploitation of resources in deep. One is under the conditions that the con-fining pressure is fixed and the axial pressure is changeable. The other is under the conditions that the confining pressure becomes and the axial pressure is fixed. It is found that samples break up evenly after impacting when axial static pressures are low, there is great disparity in size of fragments when axial static pressures are high, and the main bodies of samples after the tests under the combination of dy-namic and static loads frequently show the type of V or X. The samples are more close-grained at the elastic stage and impacts make many cracks be generated and developed, as makes samples more crackable. At the initial phase of damage stage, the static pressures make some cracks in the samples which are undeveloped and the impacts′ role is similar to that at the elastic stage. At the metaphase or anaphase of damage stage, these cracks in the samples develop adequately and the impacts mainly accelerate samples′ failure. The main bodies of samples show the type of V or X after impacting due to the confining pressures′ restraining samples′ lateral formation at the elastic stage or the initial phase of damage stage, the main bodies of samples have almost formed at the stage loading static pressures and the results after impacting usually are similar to those under the axial pressures tests.展开更多
A mathematical model of a ribbon pontoon bridge subjected to moving loads was formulated using the theory of simply supported beams.Two types of moving load models were used, the first a moving-constant-force model an...A mathematical model of a ribbon pontoon bridge subjected to moving loads was formulated using the theory of simply supported beams.Two types of moving load models were used, the first a moving-constant-force model and the second a moving-mass model.Using both types of loads, the dynamic behavior of a ribbon pontoon bridge was simulated while subjected to a single moving load and then multiple moving loads.Modeling was done with the Simulink package in MATLAB software.Results indicated that the model is correct.The two types of moving load models made little difference to the response ranges when loads moved on the bridge, but made some difference to the response phases.When loads left, the amplitude of the dynamic responses induced by the moving-constant-force model load were larger than those induced by the moving-mass model.There was a great deal more difference when there were more loads.展开更多
The mathematical model of dynamic loads was developed based on an analysis of the polished rod load of beam pumps, and the variation of the dynamic loads and the computation of the minimum and maximum limits during a ...The mathematical model of dynamic loads was developed based on an analysis of the polished rod load of beam pumps, and the variation of the dynamic loads and the computation of the minimum and maximum limits during a complete pumping cycle were given out by solving the model.Field examples verify that it is necessary to take into account the inertial and vibration loads while calculating polished rod loads.During the prophase of the pumping production, the dynamic to polished rod load ratio is relatively large.Then the ratio decreases rapidly and becomes small after entering stable production.Moreover, the total deformation of rod and tubing in CBM wells is much smaller than that in oil fields, and the deformation caused by the dynamic loads is also relatively small.The result of this work is the calculation of the dynamic loads.The application of this calculation for the sucker rod pumping system in CBM wells can give the desired accuracy of polished rod load and the dynamometer cards, which provides a reasonable basis for the design and selection of beam pumps.展开更多
Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soi...Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-Δ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN·m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test(2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test.展开更多
Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads...Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.展开更多
Having an accurate understanding of concrete behavior under effects of high strain rate loading with the aim of reducing incurred damages is of great importance. Due to complexities and high costs of experimental rese...Having an accurate understanding of concrete behavior under effects of high strain rate loading with the aim of reducing incurred damages is of great importance. Due to complexities and high costs of experimental research, numerical studies can be an appropriate alternative for experimental methods. Therefore, in this research capability of the finite element method for predicting concrete behavior at various loading conditions is evaluated by LS-DYNA software. First, the proposed method is presented and then is validated in three stages under different conditions. Results of load-lnidspan displacement showed good agreement between experimental and finite element results. Capability of finite element method in analyses of beams under various rates of loading was also validated by low error of the results. In addition, the proposed method has reasonable ability to evaluate reinforced concrete beams under various loading rates and different conditions.展开更多
The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the ...The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the free surface condition and body boundary condition. The difference is that the MLM applies a nonlinear Bernoulli equation to obtain pressure distribution, which has been proven to be helpful to enhance the accuracy of hydrodynamic loads. The Wagner condition in this paper was generalized to solve the problem of the water entry of a wedge body with rotational velocity. The comparison of wet width between the MLM and a fully nonlinear numerical approach was given, and they agree well with each other. The effect of angular velocity on the hydrodynamic loads of a wedge body was investigated.展开更多
The phenomenon of ground vibration amplification caused by railway traffic was found and proved. In order to study the reasons which cause the amplification, a drop-weight test was performed. Then, the model for both ...The phenomenon of ground vibration amplification caused by railway traffic was found and proved. In order to study the reasons which cause the amplification, a drop-weight test was performed. Then, the model for both homogeneous and layered soil subjected to a harmonic vertical load was built. With the help of this model, displacement Green's function was calculated and the propagation laws of ground vibration responses were discussed. Results show that: 1) When applying a harmonic load on the half-space surface, the amplitude of ground vibrations attenuate with fluctuation, which is caused by the superposition of bulk and Rayleigh waves. 2) Vibration amplification can be enlarged under the conditions of embedded source and the soil layers. 3) In practice, the fluctuant attenuation should be paid attention to especially for the vibration receivers who are sensitive to single low frequencies(<10 Hz). Moreover, for the case of embedded loads, it should also be paid attention to that the receivers are located at the place where the horizontal distance is similar to embedded depth, usually 10 to 30 m for metro lines.展开更多
The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically...The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.展开更多
In this paper,we studied the wing root pivot joint’s radial load of a submersible airplane which imitates the locomotion of gannet’s Morus plunge-diving,by implementing a test device name Mimic-Gannet.The housing of...In this paper,we studied the wing root pivot joint’s radial load of a submersible airplane which imitates the locomotion of gannet’s Morus plunge-diving,by implementing a test device name Mimic-Gannet.The housing of the device was designed by mimicking the morphology of a living gannet,and the folding wings were realized by the mechanism of variable swept back wing.Then,the radial loads of the wing root were obtained under the conditions of different dropping heights,different sweptback angles and different water-entry inclination angles(i.e.,the angle between the longitudinal body axis and the water surface),and the relationships between the peak radial load and the above three parameters were analyzed and discussed respectively.In the studied areas,the minimum peak radial load of the pivot joint is 50.93 N,while the maximum reaches up to1135.00 N.The largest peak load would be generated for the situation of vertical water entry and zero wing sweptback angle.And it is of great significance to choose the three parameters properly to reduce the pivot joint’s radial load,i.e.,larger wing sweptback angle,smaller dropping height and water-entry inclination angle.It is also concluded that the peak radial load on the wing root is closely linear with the water-entry dropping height and the wing sweptback angle with a significant correlation.Eventually,the relationship between the wing load and the dropping height,water-entry inclination angle or wing sweptback angle,could be used to calculate the wing load about plunge-diving of a submersible aircraft,and the conclusions reveal the wing load characteristic of the gannet’s plunge process for the biologists.展开更多
基金supported by the National Nature Science Foundation of China(No.12072007)the Ningbo Nature Science Foundation(No.202003N4018)+1 种基金the Aeronautical Science Foundation of China (No. 20182951014)the Defense Industrial Technology Development Program(No.JCKY2019209C004)
文摘The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.
文摘In this paper modelling of the translational motion of transportation rail-guided cart with rope suspended payload is considered. The linearly moving cart,driven by a travel mechanism,is modelled as a discrete six degrees of freedom (DOF) dynamic system. The hoisting mechanism for lowering and lifting the payload is considered and is included in the dynamic model as one DOF system. Differential equations of motion of the cart elements are derived using Lagrangian dynamics and are solved for a set of real-life constant parameters of the cart. A two-sided interaction was observed between the swinging payload and the travel mechanism. Results for kinematical and force parameters of the system are obtained. A verification of the proposed model was conducted.
基金Supported by National Natural Science Foundation of China(No.10472134 and No.50490274)
文摘By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course of exploitation of resources in deep. One is under the conditions that the con-fining pressure is fixed and the axial pressure is changeable. The other is under the conditions that the confining pressure becomes and the axial pressure is fixed. It is found that samples break up evenly after impacting when axial static pressures are low, there is great disparity in size of fragments when axial static pressures are high, and the main bodies of samples after the tests under the combination of dy-namic and static loads frequently show the type of V or X. The samples are more close-grained at the elastic stage and impacts make many cracks be generated and developed, as makes samples more crackable. At the initial phase of damage stage, the static pressures make some cracks in the samples which are undeveloped and the impacts′ role is similar to that at the elastic stage. At the metaphase or anaphase of damage stage, these cracks in the samples develop adequately and the impacts mainly accelerate samples′ failure. The main bodies of samples show the type of V or X after impacting due to the confining pressures′ restraining samples′ lateral formation at the elastic stage or the initial phase of damage stage, the main bodies of samples have almost formed at the stage loading static pressures and the results after impacting usually are similar to those under the axial pressures tests.
文摘A mathematical model of a ribbon pontoon bridge subjected to moving loads was formulated using the theory of simply supported beams.Two types of moving load models were used, the first a moving-constant-force model and the second a moving-mass model.Using both types of loads, the dynamic behavior of a ribbon pontoon bridge was simulated while subjected to a single moving load and then multiple moving loads.Modeling was done with the Simulink package in MATLAB software.Results indicated that the model is correct.The two types of moving load models made little difference to the response ranges when loads moved on the bridge, but made some difference to the response phases.When loads left, the amplitude of the dynamic responses induced by the moving-constant-force model load were larger than those induced by the moving-mass model.There was a great deal more difference when there were more loads.
基金Supported by the National Science and Technology Special Project of China(2008ZX05038-004)Shandong Province Science and Technology Development Project(2009GG10007008)
文摘The mathematical model of dynamic loads was developed based on an analysis of the polished rod load of beam pumps, and the variation of the dynamic loads and the computation of the minimum and maximum limits during a complete pumping cycle were given out by solving the model.Field examples verify that it is necessary to take into account the inertial and vibration loads while calculating polished rod loads.During the prophase of the pumping production, the dynamic to polished rod load ratio is relatively large.Then the ratio decreases rapidly and becomes small after entering stable production.Moreover, the total deformation of rod and tubing in CBM wells is much smaller than that in oil fields, and the deformation caused by the dynamic loads is also relatively small.The result of this work is the calculation of the dynamic loads.The application of this calculation for the sucker rod pumping system in CBM wells can give the desired accuracy of polished rod load and the dynamometer cards, which provides a reasonable basis for the design and selection of beam pumps.
基金Project(51208071)supported by the National Natural Science Foundation of ChinaProject(2010CB732106)supported by the National Basic Research Program of China
文摘Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-Δ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN·m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test(2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test.
基金Project(660)supported by University of Mohaghegh Ardabili,Iran
文摘Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.
文摘Having an accurate understanding of concrete behavior under effects of high strain rate loading with the aim of reducing incurred damages is of great importance. Due to complexities and high costs of experimental research, numerical studies can be an appropriate alternative for experimental methods. Therefore, in this research capability of the finite element method for predicting concrete behavior at various loading conditions is evaluated by LS-DYNA software. First, the proposed method is presented and then is validated in three stages under different conditions. Results of load-lnidspan displacement showed good agreement between experimental and finite element results. Capability of finite element method in analyses of beams under various rates of loading was also validated by low error of the results. In addition, the proposed method has reasonable ability to evaluate reinforced concrete beams under various loading rates and different conditions.
基金Supported by Supported by "111 Program" (B07019)
文摘The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the free surface condition and body boundary condition. The difference is that the MLM applies a nonlinear Bernoulli equation to obtain pressure distribution, which has been proven to be helpful to enhance the accuracy of hydrodynamic loads. The Wagner condition in this paper was generalized to solve the problem of the water entry of a wedge body with rotational velocity. The comparison of wet width between the MLM and a fully nonlinear numerical approach was given, and they agree well with each other. The effect of angular velocity on the hydrodynamic loads of a wedge body was investigated.
基金Project(51278043)supported by National Natural Science Foundation of China
文摘The phenomenon of ground vibration amplification caused by railway traffic was found and proved. In order to study the reasons which cause the amplification, a drop-weight test was performed. Then, the model for both homogeneous and layered soil subjected to a harmonic vertical load was built. With the help of this model, displacement Green's function was calculated and the propagation laws of ground vibration responses were discussed. Results show that: 1) When applying a harmonic load on the half-space surface, the amplitude of ground vibrations attenuate with fluctuation, which is caused by the superposition of bulk and Rayleigh waves. 2) Vibration amplification can be enlarged under the conditions of embedded source and the soil layers. 3) In practice, the fluctuant attenuation should be paid attention to especially for the vibration receivers who are sensitive to single low frequencies(<10 Hz). Moreover, for the case of embedded loads, it should also be paid attention to that the receivers are located at the place where the horizontal distance is similar to embedded depth, usually 10 to 30 m for metro lines.
文摘The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.
基金supported by the National Natural Science Foundation of China(Grant No.51005008)
文摘In this paper,we studied the wing root pivot joint’s radial load of a submersible airplane which imitates the locomotion of gannet’s Morus plunge-diving,by implementing a test device name Mimic-Gannet.The housing of the device was designed by mimicking the morphology of a living gannet,and the folding wings were realized by the mechanism of variable swept back wing.Then,the radial loads of the wing root were obtained under the conditions of different dropping heights,different sweptback angles and different water-entry inclination angles(i.e.,the angle between the longitudinal body axis and the water surface),and the relationships between the peak radial load and the above three parameters were analyzed and discussed respectively.In the studied areas,the minimum peak radial load of the pivot joint is 50.93 N,while the maximum reaches up to1135.00 N.The largest peak load would be generated for the situation of vertical water entry and zero wing sweptback angle.And it is of great significance to choose the three parameters properly to reduce the pivot joint’s radial load,i.e.,larger wing sweptback angle,smaller dropping height and water-entry inclination angle.It is also concluded that the peak radial load on the wing root is closely linear with the water-entry dropping height and the wing sweptback angle with a significant correlation.Eventually,the relationship between the wing load and the dropping height,water-entry inclination angle or wing sweptback angle,could be used to calculate the wing load about plunge-diving of a submersible aircraft,and the conclusions reveal the wing load characteristic of the gannet’s plunge process for the biologists.