A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are p...A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are presented. By approaches of nonlinear analysis some solvability results of this equation and continuous perturbation properties of the relative solution sets are obtained, and some economic significance are illustrated by the remark.展开更多
In this paper,we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet.The boundary conditions considered were a nonlin...In this paper,we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet.The boundary conditions considered were a nonlinear magnetic field,a nonlinear velocity and convection.Such nonlinearity in hydrodynamic and heat transfer boundary conditions and also in the magnetic field has not been addressed with the great details in the literature.In this investigation,both the Brownian motion and thermophoretic diffusion have been considered.A similarity solution is achieved and the resulting ordinary differential equations (nonlinear) are worked numerically out.Upon validation,the following hydrodynamic and heat and mass transfers parameters were found:the reduced Sherwood and Nusselt numbers,the reduced skin friction coefficient,and the temperature and nanoparticle volume fraction profiles.All these parameters are found affected by the Lewis,Biot and Prandtl numbers,the stretching,thermophoretic diffusion,Brownian motion and magnetic parameters.The detailed trends observed in this paper are carefully analyzed to provide useful design suggestions.展开更多
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the so...In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by usethe of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.展开更多
This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transve...This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.展开更多
An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for...An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.展开更多
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method...This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.展开更多
The impacts of initial perturbations on the computational stability of nonlinear evolution equations for non-conservative difference schemes and non-periodic boundary conditions are studied through theoretical analysi...The impacts of initial perturbations on the computational stability of nonlinear evolution equations for non-conservative difference schemes and non-periodic boundary conditions are studied through theoretical analysis and numerical experiments for the case of onedimensional equations.The sensitivity of the difference scheme to initial values is further analyzed.The results show that the computational stability primarily depends on the form of the initial values if the difference scheme and boundary conditions are determined.Thus,the computational stability is sensitive to the initial perturbations.展开更多
To analyze the static and dynamic behaviors of the thin-walled box girder in its lateral webs in consideration of shear lag effect and shear deformation, an approach based on the minimum potential principle is introdu...To analyze the static and dynamic behaviors of the thin-walled box girder in its lateral webs in consideration of shear lag effect and shear deformation, an approach based on the minimum potential principle is introduced in this paper. Both static and dynamic response equations as well as the corresponding natural boundary conditions of the box girder are deduced. Meanwhile, three generalized displacement functions: w (x) , U(x) and O(x) are employed and their differences in the calculus of variation are quantitatively investigated. The comparison of finite shell element results with analytical results of calculation examples validates the feasibility of the proposed approach.展开更多
Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and therm...Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.展开更多
In industrial applications involving metal and polymer sheets, the flow situation is strongly unsteady and the sheet temperature is a mixture of prescribed surface temperature and heat flux. Further, a proper choice o...In industrial applications involving metal and polymer sheets, the flow situation is strongly unsteady and the sheet temperature is a mixture of prescribed surface temperature and heat flux. Further, a proper choice of cooling liquid is also an important component of the analysis to achieve better outputs. In this paper, we numerically investigate Darcy-Forchheimer nanoliquid flows past an unsteady stretching surface by incorporating various effects, such as the Brownian and thermophoresis effects, Navier’s slip condition and convective thermal boundary conditions. To solve the governing equations, using suitable similarity transformations, the nonlinear ordinary differential equations are derived and the resulting coupled momentum and energy equations are numerically solved using the spectral relaxation method. Through the systematically numerical investigation, the important physical parameters of the present model are analyzed. We find that the presence of unsteadiness parameter has significant effects on velocity, temperature, concentration fields, the associated heat and mass transport rates. Also, an increase in inertia coefficient and porosity parameter causes an increase in the velocity at the boundary.展开更多
Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for non-dissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for...Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for non-dissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for diagonalizing the Hamiltonian of the uniform periodic transmission line. The unitary operator is expressed in a coordinate representation that brings convenience to deriving the density matrix rho(q,q',beta). The quantum fluctuations of charge and current at a definite temperature have been studied. It is shown that quantum fluctuations of distributed parameter circuits, which also have distributed properties, are related to both the circuit parameters and the positions and the mode of signals and temperature T. The higher the temperature is, the stronger quantum noise the circuit exhibits.展开更多
The decay estimations of the solution to an elliptic equation with dynamical boundary condition is considered.We proved that,for suitable initial datum,the energy of the solution decays "in time" exponential...The decay estimations of the solution to an elliptic equation with dynamical boundary condition is considered.We proved that,for suitable initial datum,the energy of the solution decays "in time" exponentially if p=0,whereas the decay is polynomial order if p>0.展开更多
文摘A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are presented. By approaches of nonlinear analysis some solvability results of this equation and continuous perturbation properties of the relative solution sets are obtained, and some economic significance are illustrated by the remark.
文摘In this paper,we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet.The boundary conditions considered were a nonlinear magnetic field,a nonlinear velocity and convection.Such nonlinearity in hydrodynamic and heat transfer boundary conditions and also in the magnetic field has not been addressed with the great details in the literature.In this investigation,both the Brownian motion and thermophoretic diffusion have been considered.A similarity solution is achieved and the resulting ordinary differential equations (nonlinear) are worked numerically out.Upon validation,the following hydrodynamic and heat and mass transfers parameters were found:the reduced Sherwood and Nusselt numbers,the reduced skin friction coefficient,and the temperature and nanoparticle volume fraction profiles.All these parameters are found affected by the Lewis,Biot and Prandtl numbers,the stretching,thermophoretic diffusion,Brownian motion and magnetic parameters.The detailed trends observed in this paper are carefully analyzed to provide useful design suggestions.
基金Supported by the Yildiz Technical University Scientific Research Projects Coordination Department.Project Number:2012-10-01 KAP 02
文摘In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by usethe of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
基金the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No.200802171009)+2 种基金Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.
基金supported by National Natural Science Foundation of China under Grant No.10474022
文摘An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 11302057, 11302056), the Fundamental Research Funds for the Central Universities (Grant No. HEUCF140115) and the Research Funds for State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No. 1310).
文摘This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.
基金supported by the"Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues"of the Chinese Academy of Sciences (Grant No.XDA01020304)
文摘The impacts of initial perturbations on the computational stability of nonlinear evolution equations for non-conservative difference schemes and non-periodic boundary conditions are studied through theoretical analysis and numerical experiments for the case of onedimensional equations.The sensitivity of the difference scheme to initial values is further analyzed.The results show that the computational stability primarily depends on the form of the initial values if the difference scheme and boundary conditions are determined.Thus,the computational stability is sensitive to the initial perturbations.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50578054)
文摘To analyze the static and dynamic behaviors of the thin-walled box girder in its lateral webs in consideration of shear lag effect and shear deformation, an approach based on the minimum potential principle is introduced in this paper. Both static and dynamic response equations as well as the corresponding natural boundary conditions of the box girder are deduced. Meanwhile, three generalized displacement functions: w (x) , U(x) and O(x) are employed and their differences in the calculus of variation are quantitatively investigated. The comparison of finite shell element results with analytical results of calculation examples validates the feasibility of the proposed approach.
文摘Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.
基金Project(NRF-2016R1A2B4011009)supported by National Research Foundation of KoreaProject(KSTePS/VGST-KFIST(L1)/2017)supported by Vision Group of Science and Technology,Government of Karnataka,India
文摘In industrial applications involving metal and polymer sheets, the flow situation is strongly unsteady and the sheet temperature is a mixture of prescribed surface temperature and heat flux. Further, a proper choice of cooling liquid is also an important component of the analysis to achieve better outputs. In this paper, we numerically investigate Darcy-Forchheimer nanoliquid flows past an unsteady stretching surface by incorporating various effects, such as the Brownian and thermophoresis effects, Navier’s slip condition and convective thermal boundary conditions. To solve the governing equations, using suitable similarity transformations, the nonlinear ordinary differential equations are derived and the resulting coupled momentum and energy equations are numerically solved using the spectral relaxation method. Through the systematically numerical investigation, the important physical parameters of the present model are analyzed. We find that the presence of unsteadiness parameter has significant effects on velocity, temperature, concentration fields, the associated heat and mass transport rates. Also, an increase in inertia coefficient and porosity parameter causes an increase in the velocity at the boundary.
文摘Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for non-dissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for diagonalizing the Hamiltonian of the uniform periodic transmission line. The unitary operator is expressed in a coordinate representation that brings convenience to deriving the density matrix rho(q,q',beta). The quantum fluctuations of charge and current at a definite temperature have been studied. It is shown that quantum fluctuations of distributed parameter circuits, which also have distributed properties, are related to both the circuit parameters and the positions and the mode of signals and temperature T. The higher the temperature is, the stronger quantum noise the circuit exhibits.
基金Supported by the National Natural Science Foundation of China(10671182)Supported by the Natural Science Foundation of Henan Province(0611053300+1 种基金200510463024)Supported by the Young Skeleton Teacher Project of the Higher School of Henan Province
文摘The decay estimations of the solution to an elliptic equation with dynamical boundary condition is considered.We proved that,for suitable initial datum,the energy of the solution decays "in time" exponentially if p=0,whereas the decay is polynomial order if p>0.