Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study t...Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study the collision- induced quantum interference on rotational energy transfer in an atom-diatom system. The calculation is based on the first-order Born approximation of time-dependent perturbation theory, and the anisotropic Lennard-Jones intcraction potentials are also employed, The relationships between differential interference angle and impact parameter, including collision diameter and velocity, are obtained,展开更多
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the ...The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.展开更多
Resonant and nonresonant intermolecular vibrational energy transfers in Gdm- SCN/KSCN=1/1, GdmSCN/KS^13CN=1/1 and GdmSCN/KS^13C^15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensi...Resonant and nonresonant intermolecular vibrational energy transfers in Gdm- SCN/KSCN=1/1, GdmSCN/KS^13CN=1/1 and GdmSCN/KS^13C^15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensional infrared spectroscopy. The energy transfers in the samples are slower with a larger energy donor/acceptor gap, independent of the Raman spectra. The energy gap dependences of the nonresonant energy transfers cannot be described by the phonon compensation mechanism. Instead, the experi- mental energy gap dependences can be quantitatively described by the dephasing mechanism. Temperature dependences of resonant and nonresonant energy transfer rates in the melts are also consistent with the prediction of the dephasing mechanism. The series of results suggest that the dephasing mechanism can be dominant not only in solutions, but also in melts (pure liquids without solvents), only if the molecular motions (translations and rotations) are much faster than the nonresonant energy transfer processes.展开更多
The Weather Research and Forecasting (WRF) model was used to investigate the role of downward momentum transport in the formation of severe surface winds for a squall line on 3-4 June 2009 across regions of the Henan ...The Weather Research and Forecasting (WRF) model was used to investigate the role of downward momentum transport in the formation of severe surface winds for a squall line on 3-4 June 2009 across regions of the Henan and Shandong Provinces of China. The results show that there was a strong westerly jet belt with a wind speed greater than 30 m s 1 and a thickness of 5 km at an altitude of 11-16 km. The jet belt was accelerated, and it descended while the squall line convective system occurred. It was found that the appearance of strong negative perturbation pressure accompanied by the squall line caused the acceleration of the upper-level westerly jet and increased the horizontal wind speed by a maximum of 18%. Meanwhile, the negative buoyancy due to the loading, melting, and evaporation of cloud hydrometeors induced the downward momentum transport from the upper levels. The downward momentum transport contributed approximately 70% and the surface cold pool 30% to the formation of severe surface winds.展开更多
Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-th...Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period > 10 min),gusty disturbances(1 min < period < 10 min)and turbulence fluctuations(period < 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.展开更多
Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity...Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation.展开更多
To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetra...To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.展开更多
Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monome...Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monomeric water shows a bi-exponential decay. The fast compo- nent (T1=(1.2±0.1) ps) is caused by the rapid population equilibration between the vibrational modes of the monomeric water molecule. The slow component (T2=(26.4±0.2) ps) is mainly caused by the vibrational population decay of OH bending mode. The reorientation of the OH bending in monomeric water is determined with a time constant of t=(1.2±0.1) ps which is much faster than the rotational dynamics of water molecules in the bulk solution. Furthermore, we are able to reveal the direct vibrational energy transfer from OH stretching to OH bending in monomeric water dissolved in d-chloroform for the first time. The vibrational coupling and relative orientation of transition dipole moment between OH bending and stretching that effect their intra-molecular vibrational energy transfer rates are discussed in detail.展开更多
A new kind of hydraulic transformer, called variable hydraulic transformer(VHT), is proposed to control its load flow rate. The hydraulic transformer evolves from a pressure transducer to a power transducer. The flow ...A new kind of hydraulic transformer, called variable hydraulic transformer(VHT), is proposed to control its load flow rate. The hydraulic transformer evolves from a pressure transducer to a power transducer. The flow characteristics of VHT, such as its instantaneous flow rates, average flow rates, and flow pulsations in the ports, are investigated. Matlab software is used to simulate and calculate. There are five controlled angles of the port plate that can help to define the flow characteristics of VHT. The relationships between the flow characteristics and the structure in VHT are shown. Also, the plus-minus change of the average flow rates and the continuity of the instantaneous flow rates in the ports are presented. The results demonstrate the performance laws of VHT when the controlled angles of the port plate and of the swash plate change. The results also reveal that the special principle of the flow pulsation in the ports and the jump points of the instantaneous curves are the two basic causes of its loud noise, and that the control angles of the port plate and the swash plate and the pressures in the ports are the three key factors of the noise.展开更多
When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fie...When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.展开更多
The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor. The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magn...The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor. The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined, The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determi-nation of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process. The apparent activation energy was calculated to be 32.8kJ·mol-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.展开更多
α decay half-lives are calculated using the Qα values obtained by Semi-empirical Shell Model in the framework of the Unified Fission Model (UFM) with the Coulomb repulsion, nuclear attraction due to proximity pote...α decay half-lives are calculated using the Qα values obtained by Semi-empirical Shell Model in the framework of the Unified Fission Model (UFM) with the Coulomb repulsion, nuclear attraction due to proximity potential, and rotational energy due to angular momentum transfer of a particle. In addition, the calculated and experimental half-lives of 425 nuclei are compared to check the validity of the model applied on α decay. The calculated half-lives of decay are in good agreement with the experimental data. Finally, some useful predications on the α decay half-lives are provided for future experiments.展开更多
This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model ...This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.展开更多
In order to solve the core issue of the energy regulation (ER) on multi-energy resource powertrain of fuel cell vehicle, the work functions of each component were defined; the mathematical algorithm model of energy ...In order to solve the core issue of the energy regulation (ER) on multi-energy resource powertrain of fuel cell vehicle, the work functions of each component were defined; the mathematical algorithm model of energy regulation was established and the relevant solution was found. This algorithm was evaluated successfully on the hardware in loop (FILL) platform under three typical urban running cycles. The results showed ER control target had been realized and the mathematical algorithm was effective and reasonable. Based on the HIL simulation, some conclusions and ER strategies were made. According to the different power component parameters and real time control request, this algorithm should be modified and calibrated for application in the actual control system.展开更多
According to the characteristic of the sensor inertia, the dynamic prediction to improve the system dynamic precision is presented in this paper. With the recurrence calculation of time constant of the sensor, the sys...According to the characteristic of the sensor inertia, the dynamic prediction to improve the system dynamic precision is presented in this paper. With the recurrence calculation of time constant of the sensor, the system dynamic precision is greatly improved. The example using this method is given.展开更多
Three functional models, polynomial, spectral analysis, and modified AR model, are studied and compared in fitting and predicting clock deviation based on the data sequence derived from two-way satellite time and freq...Three functional models, polynomial, spectral analysis, and modified AR model, are studied and compared in fitting and predicting clock deviation based on the data sequence derived from two-way satellite time and frequency transfer. A robust equivalent weight is applied, which controls the significant influence of outlying observations. Some conclusions show that the prediction precision of robust estimation is better than that of LS. The prediction precision calculated from smoothed observations is higher than that calculated from sampling observations. As a count of the obvious period variations in the clock deviation sequence, the predicted values of polynomial model are implausible. The prediction precision of spectral analysis model is very low, but the principal periods can be determined. The prediction RMS of 6-hour extrapolation interval is Ins or so, when modified AR model is used.展开更多
The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound...The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.展开更多
Movement accuracy is the key factor to be considered in designing precision instrument linkage and mini-linkage mechanisms. Although manufacturing errors, elastic deformation, kinematic pair clearance and friction fac...Movement accuracy is the key factor to be considered in designing precision instrument linkage and mini-linkage mechanisms. Although manufacturing errors, elastic deformation, kinematic pair clearance and friction factors all will have synthesis effect on the position accuracy of the mechanical system, the essential factor to guarantee the movement precision remains the kinematic dimensions. Combining the classical theory of mechanical synthesis with the modern error theory and the numerical method, the authors put forward a systematic and complete process and method of computer aided design for the instrument crank-coupler mechanism in which the follower takes the linear displacement approximately within a certain limited domain, with the design result of least transmission ratio error.展开更多
In this paper, we use the metric coefficients and the equation of motion obtained in the second post- Newtonian approximation of scalar-tensor theory to derive the second-order light propagation equation and the light...In this paper, we use the metric coefficients and the equation of motion obtained in the second post- Newtonian approximation of scalar-tensor theory to derive the second-order light propagation equation and the light deflection angle and compare it with previous works. These results are useful for precision astrometry missions like ASTROD, GALA, Darwin and SIM which aim at astrometry with micro-arcsecond and nano-aresecond accuracies, and need for the second post-Newtonian framework and ephemeris for observations to determine the stellar and spacecraft positions.展开更多
An instnmaent awakened by means of vibration for single hydraulic prop pressame measuring is described in this paper. The principle and implementation of this metlmd are introduced in detail. The instnznent uses the h...An instnmaent awakened by means of vibration for single hydraulic prop pressame measuring is described in this paper. The principle and implementation of this metlmd are introduced in detail. The instnznent uses the hgh-perftmnance single chip C8051F310 as its MCU and vibration sensor as its awaking device. It has such advantages as small vohane and low power consmnption, and moreover it could resolve the problem that traditional pressure measming instrument on single hydraulic prop can't be used in coal mine.展开更多
基金This work was supported by National Natural Science Foundation of China(No.10374040).
文摘Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study the collision- induced quantum interference on rotational energy transfer in an atom-diatom system. The calculation is based on the first-order Born approximation of time-dependent perturbation theory, and the anisotropic Lennard-Jones intcraction potentials are also employed, The relationships between differential interference angle and impact parameter, including collision diameter and velocity, are obtained,
基金supported by the National Natural Science Foundation of China (Grant Nos.41272297,41401195)the Applied Basic Research Fund of the Science and Technology Department of Sichuan Province (2014JY0121)the Key Research Fund of the Education Department of Sichuan Province (14ZA0095)
文摘The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.
文摘Resonant and nonresonant intermolecular vibrational energy transfers in Gdm- SCN/KSCN=1/1, GdmSCN/KS^13CN=1/1 and GdmSCN/KS^13C^15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensional infrared spectroscopy. The energy transfers in the samples are slower with a larger energy donor/acceptor gap, independent of the Raman spectra. The energy gap dependences of the nonresonant energy transfers cannot be described by the phonon compensation mechanism. Instead, the experi- mental energy gap dependences can be quantitatively described by the dephasing mechanism. Temperature dependences of resonant and nonresonant energy transfer rates in the melts are also consistent with the prediction of the dephasing mechanism. The series of results suggest that the dephasing mechanism can be dominant not only in solutions, but also in melts (pure liquids without solvents), only if the molecular motions (translations and rotations) are much faster than the nonresonant energy transfer processes.
基金supported by the National Meteorology Public Welfare Industry Research Project(GYHY200806001)the National Science and Technology Support Program (2006BAC12B03)
文摘The Weather Research and Forecasting (WRF) model was used to investigate the role of downward momentum transport in the formation of severe surface winds for a squall line on 3-4 June 2009 across regions of the Henan and Shandong Provinces of China. The results show that there was a strong westerly jet belt with a wind speed greater than 30 m s 1 and a thickness of 5 km at an altitude of 11-16 km. The jet belt was accelerated, and it descended while the squall line convective system occurred. It was found that the appearance of strong negative perturbation pressure accompanied by the squall line caused the acceleration of the upper-level westerly jet and increased the horizontal wind speed by a maximum of 18%. Meanwhile, the negative buoyancy due to the loading, melting, and evaporation of cloud hydrometeors induced the downward momentum transport from the upper levels. The downward momentum transport contributed approximately 70% and the surface cold pool 30% to the formation of severe surface winds.
基金supported by the national natural Science Foundation of China(40830103 and 41375018)the national Basic Research Program of China(2010CB951804)the Research Program of the Chinese Academy of Sciences(XDA10010403)
文摘Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period > 10 min),gusty disturbances(1 min < period < 10 min)and turbulence fluctuations(period < 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.
基金Supported by the National Natural Science Foundation of China (No. 29876022) and Grant of State Key Laboratory of High Speed Hydrodynamics (No. 2007).
文摘Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation.
文摘To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.
文摘Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monomeric water shows a bi-exponential decay. The fast compo- nent (T1=(1.2±0.1) ps) is caused by the rapid population equilibration between the vibrational modes of the monomeric water molecule. The slow component (T2=(26.4±0.2) ps) is mainly caused by the vibrational population decay of OH bending mode. The reorientation of the OH bending in monomeric water is determined with a time constant of t=(1.2±0.1) ps which is much faster than the rotational dynamics of water molecules in the bulk solution. Furthermore, we are able to reveal the direct vibrational energy transfer from OH stretching to OH bending in monomeric water dissolved in d-chloroform for the first time. The vibrational coupling and relative orientation of transition dipole moment between OH bending and stretching that effect their intra-molecular vibrational energy transfer rates are discussed in detail.
基金Projects(50875054,51275123)supported by the National Natural Science Foundation of ChinaProject(GZKF-2008003)supported by the Open Foundation of State Key Laboratory of Fluid Transmission and Control,China
文摘A new kind of hydraulic transformer, called variable hydraulic transformer(VHT), is proposed to control its load flow rate. The hydraulic transformer evolves from a pressure transducer to a power transducer. The flow characteristics of VHT, such as its instantaneous flow rates, average flow rates, and flow pulsations in the ports, are investigated. Matlab software is used to simulate and calculate. There are five controlled angles of the port plate that can help to define the flow characteristics of VHT. The relationships between the flow characteristics and the structure in VHT are shown. Also, the plus-minus change of the average flow rates and the continuity of the instantaneous flow rates in the ports are presented. The results demonstrate the performance laws of VHT when the controlled angles of the port plate and of the swash plate change. The results also reveal that the special principle of the flow pulsation in the ports and the jump points of the instantaneous curves are the two basic causes of its loud noise, and that the control angles of the port plate and the swash plate and the pressures in the ports are the three key factors of the noise.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10175029, 10375039, and 10647007, the Doctoral Education Fund of Ministry of Education, the Research Fund of Nuclear Theory Center of HIRFL of China, and the Science and Technology Foundation of Sichuan Province under Grant No. 02GY029-189
文摘When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.
文摘The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor. The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined, The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determi-nation of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process. The apparent activation energy was calculated to be 32.8kJ·mol-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.
基金Supported by the Natural Science Foundation of China under Grant Nos.10775061,10875152,10875151,and 10975064the Fundamental Research Fund for Physics and Mathematic of Lanzhou University(LZULL200805)+2 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2009-21)the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant Nos.KJCX2-SW-N17,KJCX3-SW-N02Major State Basic Research Development Program under Grant No.2007CB815000
文摘α decay half-lives are calculated using the Qα values obtained by Semi-empirical Shell Model in the framework of the Unified Fission Model (UFM) with the Coulomb repulsion, nuclear attraction due to proximity potential, and rotational energy due to angular momentum transfer of a particle. In addition, the calculated and experimental half-lives of 425 nuclei are compared to check the validity of the model applied on α decay. The calculated half-lives of decay are in good agreement with the experimental data. Finally, some useful predications on the α decay half-lives are provided for future experiments.
基金Projects(11302252,11202230) supported by the National Natural Science Foundation of China
文摘This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.
基金National High Technology Research and Development Program"863"(No.2001AA501012)
文摘In order to solve the core issue of the energy regulation (ER) on multi-energy resource powertrain of fuel cell vehicle, the work functions of each component were defined; the mathematical algorithm model of energy regulation was established and the relevant solution was found. This algorithm was evaluated successfully on the hardware in loop (FILL) platform under three typical urban running cycles. The results showed ER control target had been realized and the mathematical algorithm was effective and reasonable. Based on the HIL simulation, some conclusions and ER strategies were made. According to the different power component parameters and real time control request, this algorithm should be modified and calibrated for application in the actual control system.
文摘According to the characteristic of the sensor inertia, the dynamic prediction to improve the system dynamic precision is presented in this paper. With the recurrence calculation of time constant of the sensor, the system dynamic precision is greatly improved. The example using this method is given.
基金Supported by the National Natural Science Foundations of China (No. 40474001, No. 40274002, No. 40604003).
文摘Three functional models, polynomial, spectral analysis, and modified AR model, are studied and compared in fitting and predicting clock deviation based on the data sequence derived from two-way satellite time and frequency transfer. A robust equivalent weight is applied, which controls the significant influence of outlying observations. Some conclusions show that the prediction precision of robust estimation is better than that of LS. The prediction precision calculated from smoothed observations is higher than that calculated from sampling observations. As a count of the obvious period variations in the clock deviation sequence, the predicted values of polynomial model are implausible. The prediction precision of spectral analysis model is very low, but the principal periods can be determined. The prediction RMS of 6-hour extrapolation interval is Ins or so, when modified AR model is used.
基金the Higher Education Commission of Pakistan (HEC) for the financial support through Indigenous program
文摘The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.
文摘Movement accuracy is the key factor to be considered in designing precision instrument linkage and mini-linkage mechanisms. Although manufacturing errors, elastic deformation, kinematic pair clearance and friction factors all will have synthesis effect on the position accuracy of the mechanical system, the essential factor to guarantee the movement precision remains the kinematic dimensions. Combining the classical theory of mechanical synthesis with the modern error theory and the numerical method, the authors put forward a systematic and complete process and method of computer aided design for the instrument crank-coupler mechanism in which the follower takes the linear displacement approximately within a certain limited domain, with the design result of least transmission ratio error.
基金Supported by the National Natural Science Foundation of China under Grant No. 10875171
文摘In this paper, we use the metric coefficients and the equation of motion obtained in the second post- Newtonian approximation of scalar-tensor theory to derive the second-order light propagation equation and the light deflection angle and compare it with previous works. These results are useful for precision astrometry missions like ASTROD, GALA, Darwin and SIM which aim at astrometry with micro-arcsecond and nano-aresecond accuracies, and need for the second post-Newtonian framework and ephemeris for observations to determine the stellar and spacecraft positions.
文摘An instnmaent awakened by means of vibration for single hydraulic prop pressame measuring is described in this paper. The principle and implementation of this metlmd are introduced in detail. The instnznent uses the hgh-perftmnance single chip C8051F310 as its MCU and vibration sensor as its awaking device. It has such advantages as small vohane and low power consmnption, and moreover it could resolve the problem that traditional pressure measming instrument on single hydraulic prop can't be used in coal mine.