This paper refers to an integrated mCCHP (micro-combined cooling heat and power) systems dedicated for isolated residents with energetic independence. The only energy sources are wood pellet and solar energy. The pr...This paper refers to an integrated mCCHP (micro-combined cooling heat and power) systems dedicated for isolated residents with energetic independence. The only energy sources are wood pellet and solar energy. The proposed trigeneration system is based on mCHP (micro-combined heat and power) unit with Stirling engine, photovoltaic panels, thermal solar collector and pellet boiler. The proposed mCCHP system utilizes the exceeding amount of heat in the summer for producing the necessary cooling. A residential building with known energy consumption is determined load curves that must be covered by mCCHP system. The paper analyzes four structures of trigeneration systems with thermal activation chiller and two structures of trigeneration systems with mechanical compression chiller. Performance indicators are determined based on energy balance equations for each variant. It compares the performances and establishes the best option.展开更多
Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields a...Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields and self fields, as occurs if one begins with Lorentz's law, the most usual approach appearing in textbooks. Indeed our deduction implies a generalized force density in which the total fields appear. As an application of the present deduction, we discuss briefly the Abraham-Minkowski controversy, showing its relation to open or closed electromagnetic systems. This approach will be interesting for scholars as well as graduate students interested in conceptual problems of relativistic electromagnetism.展开更多
The goal of this article is to study numerically the mixed convection in a differentially heated rid-driven cavity with non-uniform heating of the bottom wall. The velocity field is solved by a hybrid scheme with mult...The goal of this article is to study numerically the mixed convection in a differentially heated rid-driven cavity with non-uniform heating of the bottom wall. The velocity field is solved by a hybrid scheme with multiple relaxation time Lattice Boltzmann (MRT-LBM) model, while the temperature field is obtained by resolution of the energy balance equation using the finite difference method (FDM). First, the model is checked and validated using data from the riterature. Validation of the present resuJts with those available in the literature shows a good agreement. A good efficiency in time simulation is confirmed. Thereafter, the model has been applied to mixed convection in a driven cavity with non-uniform heating wall at the fixed Grashof number Gr = 106. It is found that, the heat transfer is weakened as the Richardson number is augmented. For Gr = 106, we note the appearance of secondary vortices at different positions of the cavity corners.展开更多
文摘This paper refers to an integrated mCCHP (micro-combined cooling heat and power) systems dedicated for isolated residents with energetic independence. The only energy sources are wood pellet and solar energy. The proposed trigeneration system is based on mCHP (micro-combined heat and power) unit with Stirling engine, photovoltaic panels, thermal solar collector and pellet boiler. The proposed mCCHP system utilizes the exceeding amount of heat in the summer for producing the necessary cooling. A residential building with known energy consumption is determined load curves that must be covered by mCCHP system. The paper analyzes four structures of trigeneration systems with thermal activation chiller and two structures of trigeneration systems with mechanical compression chiller. Performance indicators are determined based on energy balance equations for each variant. It compares the performances and establishes the best option.
文摘Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields and self fields, as occurs if one begins with Lorentz's law, the most usual approach appearing in textbooks. Indeed our deduction implies a generalized force density in which the total fields appear. As an application of the present deduction, we discuss briefly the Abraham-Minkowski controversy, showing its relation to open or closed electromagnetic systems. This approach will be interesting for scholars as well as graduate students interested in conceptual problems of relativistic electromagnetism.
文摘The goal of this article is to study numerically the mixed convection in a differentially heated rid-driven cavity with non-uniform heating of the bottom wall. The velocity field is solved by a hybrid scheme with multiple relaxation time Lattice Boltzmann (MRT-LBM) model, while the temperature field is obtained by resolution of the energy balance equation using the finite difference method (FDM). First, the model is checked and validated using data from the riterature. Validation of the present resuJts with those available in the literature shows a good agreement. A good efficiency in time simulation is confirmed. Thereafter, the model has been applied to mixed convection in a driven cavity with non-uniform heating wall at the fixed Grashof number Gr = 106. It is found that, the heat transfer is weakened as the Richardson number is augmented. For Gr = 106, we note the appearance of secondary vortices at different positions of the cavity corners.