The general objective of this work is to analyze energy input in a vacuum process with the incorporation of microwave heating. Thus, necessary criteria for designing an efficient freeze-drying operation are considered...The general objective of this work is to analyze energy input in a vacuum process with the incorporation of microwave heating. Thus, necessary criteria for designing an efficient freeze-drying operation are considered through the analysis of strategies based on the combination of different intensities of radiant and microwave heating.The other aim of this research topic is to study the kinetics of drying in relation to mass transfer parameters.Five freeze-drying strategies using both heating systems were used. Consequently, energy input could be related to diffusivity coefficients, temperature and pressure profiles during dehydration of the product and analyzed in comparison to a conventional freeze-drying process.展开更多
The two-dimensional barrier passage is studied in the framework of Langevin statistical reactive dynamics.The optimal incident angle for a particle diffusing in the dissipative non-orthogonal environment with various ...The two-dimensional barrier passage is studied in the framework of Langevin statistical reactive dynamics.The optimal incident angle for a particle diffusing in the dissipative non-orthogonal environment with various strengthsof coupling between the two degrees of freedom is systematically calculated.The optimal diffusion path of the particlein a non-Ohmic damping system is revealed to have a probability to return to the potential valley under the combinedinfluence of the off-diagonal system tensors.展开更多
Heat and energy are conceptually different, but often are assumed to be the same without justification. An effective method for investigating diffusion properties in equilibrium systems is discussed. With this method,...Heat and energy are conceptually different, but often are assumed to be the same without justification. An effective method for investigating diffusion properties in equilibrium systems is discussed. With this method, we demonstrate that for one-dimensional systems, using the indices of particles as the space variable, which has been accepted as a convention, may lead to misleading conclusions. We then show that though in one-dimensional systems there is no general connection between energy diffusion and heat conduction, however, a general connection between heat diffusion and heat conduction may exist. Relaxation behavior of local energy current fluctuations and that of local heat current fluctuations are also studied. We find that they are significantly different,though the global energy current equals the globe heat current.展开更多
High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating...High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating the efficiency at design flow rate. A numerical simulation is very effective in design procedure, however, cost of the numerical simulation is generally high during the practical design process, and it is difficult to confn'm the optimal design which is combined with many parameters. A multi-objective optimization technique is the idea that has been proposed for solving the problem in practical design process. In this study, a Low Solidity circular cascade Diffuser (LSD) in a centrifugal blower is successfully designed by means of multi-objective optimization technique. An optimization code with a meta-model assisted evolutionary algorithm is used with a commercial CFD code ANSYS-CFX. The optimization is aiming at improving the static pressure coefficient at design point and at low flow rate condition while constraining the slope of the lift coefficient curve. Moreover, a small tip clearance of the LSD blade was applied in order to activate and to stabilize the secondary flow effect at small flow rate condition. The optimized LSD blade has an extended operating range of 114 % towards smaller flow rate as compared to the baseline design without deteriorating the diffuser pressure recovery at design point. The diffuser pressure rise and operating flow range of the optimized LSD blade are experimentally verified by overall performance test. The detailed flow in the diffuser is also confirmed by means of a Particle Image Velocimeter. Secondary flow is clearly captured by PIV and it spreads to the whole area of LSD blade pitch. It is found that the optimized LSD blade shows good improvement of the blade loading in the whole operating range, while at small flow rate the flow separation on the LSD blade has been successfully suppressed by the secondary flow effect.展开更多
Homogenization theory provides a rigorous framework for calculating the effective diffusivity of a decaying passive scalar field in a turbulent or complex flow.The authors extend this framework to the case where the p...Homogenization theory provides a rigorous framework for calculating the effective diffusivity of a decaying passive scalar field in a turbulent or complex flow.The authors extend this framework to the case where the passive scalar fluctuations are continuously replenished by a source (and/or sink).The basic structure of the homogenized equations carries over,but in some cases the homogenized source can involve a non-trivial coupling of the velocity field and the source.The authors derive expressions for the homogenized source term for various multiscale source structures and interpret them physically.展开更多
Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong l...Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser. The radiation pressure acceleration mechanism plays an important role on the studied problem. For the ions near the plasma mirror, i.e. electrons layer, the dependence of ions energy on their charge-mass ratio is derived theoretically. It is found that the larger the charge-mass ratio is, the higher the accelerated ions energy gets. For those ions far away from the layer, the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance. It exhibits that, as ions charge-mass ratio increases, not only the accelerated ions energy but also the energy spread will become large.展开更多
文摘The general objective of this work is to analyze energy input in a vacuum process with the incorporation of microwave heating. Thus, necessary criteria for designing an efficient freeze-drying operation are considered through the analysis of strategies based on the combination of different intensities of radiant and microwave heating.The other aim of this research topic is to study the kinetics of drying in relation to mass transfer parameters.Five freeze-drying strategies using both heating systems were used. Consequently, energy input could be related to diffusivity coefficients, temperature and pressure profiles during dehydration of the product and analyzed in comparison to a conventional freeze-drying process.
基金Supported by the Scientific Research Starting Foundation of Qufu Normal University and the National Natural Science Foundation of China under Grant No.10847101
文摘The two-dimensional barrier passage is studied in the framework of Langevin statistical reactive dynamics.The optimal incident angle for a particle diffusing in the dissipative non-orthogonal environment with various strengthsof coupling between the two degrees of freedom is systematically calculated.The optimal diffusion path of the particlein a non-Ohmic damping system is revealed to have a probability to return to the potential valley under the combinedinfluence of the off-diagonal system tensors.
基金the National Natural Science Foundation of China (Grant Nos. 10925525, 11275159 and 10805036)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20100121110021)
文摘Heat and energy are conceptually different, but often are assumed to be the same without justification. An effective method for investigating diffusion properties in equilibrium systems is discussed. With this method, we demonstrate that for one-dimensional systems, using the indices of particles as the space variable, which has been accepted as a convention, may lead to misleading conclusions. We then show that though in one-dimensional systems there is no general connection between energy diffusion and heat conduction, however, a general connection between heat diffusion and heat conduction may exist. Relaxation behavior of local energy current fluctuations and that of local heat current fluctuations are also studied. We find that they are significantly different,though the global energy current equals the globe heat current.
基金financially supported by Japan Society for the Promotion of Science(JSPS) program of"Strategic young researcher overseas visits program for accelerating brain circulation"
文摘High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating the efficiency at design flow rate. A numerical simulation is very effective in design procedure, however, cost of the numerical simulation is generally high during the practical design process, and it is difficult to confn'm the optimal design which is combined with many parameters. A multi-objective optimization technique is the idea that has been proposed for solving the problem in practical design process. In this study, a Low Solidity circular cascade Diffuser (LSD) in a centrifugal blower is successfully designed by means of multi-objective optimization technique. An optimization code with a meta-model assisted evolutionary algorithm is used with a commercial CFD code ANSYS-CFX. The optimization is aiming at improving the static pressure coefficient at design point and at low flow rate condition while constraining the slope of the lift coefficient curve. Moreover, a small tip clearance of the LSD blade was applied in order to activate and to stabilize the secondary flow effect at small flow rate condition. The optimized LSD blade has an extended operating range of 114 % towards smaller flow rate as compared to the baseline design without deteriorating the diffuser pressure recovery at design point. The diffuser pressure rise and operating flow range of the optimized LSD blade are experimentally verified by overall performance test. The detailed flow in the diffuser is also confirmed by means of a Particle Image Velocimeter. Secondary flow is clearly captured by PIV and it spreads to the whole area of LSD blade pitch. It is found that the optimized LSD blade shows good improvement of the blade loading in the whole operating range, while at small flow rate the flow separation on the LSD blade has been successfully suppressed by the secondary flow effect.
基金Project supported by the National Science Foundation "Collaborations in Mathematical Geosciences"(No.OCE-0620956)
文摘Homogenization theory provides a rigorous framework for calculating the effective diffusivity of a decaying passive scalar field in a turbulent or complex flow.The authors extend this framework to the case where the passive scalar fluctuations are continuously replenished by a source (and/or sink).The basic structure of the homogenized equations carries over,but in some cases the homogenized source can involve a non-trivial coupling of the velocity field and the source.The authors derive expressions for the homogenized source term for various multiscale source structures and interpret them physically.
基金Supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11175023 and 10834008partially by the Fundamental Research Funds for the Central Universities (FRFCU)
文摘Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser. The radiation pressure acceleration mechanism plays an important role on the studied problem. For the ions near the plasma mirror, i.e. electrons layer, the dependence of ions energy on their charge-mass ratio is derived theoretically. It is found that the larger the charge-mass ratio is, the higher the accelerated ions energy gets. For those ions far away from the layer, the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance. It exhibits that, as ions charge-mass ratio increases, not only the accelerated ions energy but also the energy spread will become large.