A new kind of hydraulic transformer, called variable hydraulic transformer(VHT), is proposed to control its load flow rate. The hydraulic transformer evolves from a pressure transducer to a power transducer. The flow ...A new kind of hydraulic transformer, called variable hydraulic transformer(VHT), is proposed to control its load flow rate. The hydraulic transformer evolves from a pressure transducer to a power transducer. The flow characteristics of VHT, such as its instantaneous flow rates, average flow rates, and flow pulsations in the ports, are investigated. Matlab software is used to simulate and calculate. There are five controlled angles of the port plate that can help to define the flow characteristics of VHT. The relationships between the flow characteristics and the structure in VHT are shown. Also, the plus-minus change of the average flow rates and the continuity of the instantaneous flow rates in the ports are presented. The results demonstrate the performance laws of VHT when the controlled angles of the port plate and of the swash plate change. The results also reveal that the special principle of the flow pulsation in the ports and the jump points of the instantaneous curves are the two basic causes of its loud noise, and that the control angles of the port plate and the swash plate and the pressures in the ports are the three key factors of the noise.展开更多
The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are...The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.展开更多
In order to supply theoretical guidance to hydraulic transformer's design and application,the effect of the number of plungers in hydraulic transformer on its flow characteristic is analyzed,theoretical analysis a...In order to supply theoretical guidance to hydraulic transformer's design and application,the effect of the number of plungers in hydraulic transformer on its flow characteristic is analyzed,theoretical analysis and simulation are done on hydraulic transformer's flow characteristic when the number of plungers is different.Based on the working principle of swash plate piston hydraulic components,mathematical models of instantaneous flow and flow pulsation rate are built,and simulation study is done with MATLAB.As a result,the effect is found,and some conclusions worth referring to are obtained.展开更多
To investigate the effects of flow rate on phytoplankton dynamics and related environment variables,a set of enclosure experiments with different fl ow rates were conducted in an artificial lake. We monitored nutrient...To investigate the effects of flow rate on phytoplankton dynamics and related environment variables,a set of enclosure experiments with different fl ow rates were conducted in an artificial lake. We monitored nutrients,temperature,dissolved oxygen,p H,conductivity,turbidity,chlorophyll-a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s,which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light,resulting in a dramatic shift in phytoplankton composition,from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However,flow rate significantly enhanced the inter-relationships among environmental variables,in particular by inducing higher water turbidity and vegetative reproduction of periphyton( Spirogyra). These changes were accompanied by a decrease in underwater light intensity,which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist,because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.展开更多
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the ...The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.展开更多
During last 45 years, two groups of the experimental data on critical heat flux were obtained in bare tubes, covering the pressures from atmosphere to near-critical point. One group of the data were obtained in the in...During last 45 years, two groups of the experimental data on critical heat flux were obtained in bare tubes, covering the pressures from atmosphere to near-critical point. One group of the data were obtained in the inner diameter of 2.32, 5.16, 8.05, 10.0 and 16.0 mm, respectively, with the ranges of pressure of 0.1-1.92 MPa, velocity of 1.47-23.3 m/s, local subcooling of 3.7-108.7 ℃ and heat flux of up to 38.3 MW/m2. Another group of the data were obtained in the inner diameter of 4.62, 7.98 and 10.89 mm, respectively, with the ranges of pressure of 1.7-20.6 MPa, mass flux of 454-4,055 kg/(m2.s) and inlet subcooling of 53-361 ℃. The results showed complicated effects of the pressure, mass flux, subcooling and diameter on the critical heat flux. They were formulated by two empirical correlations. A mechanistic model on the limit of heat transfer capability from the bubbly layer to the subcooled core was also proposed for all the results.展开更多
Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thu...Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus,the turbulence characteristics of upper fog layers are poorly known. In this paper,we present 4-layers of data,measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy,momentum flux,and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset,high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold,it was crucial to enhancing the cooling rate,and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode,the vertical distribution of sensible heat flux reversed,contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog,than during the fog episode. Turbulence energy was greatest in upper levels,around 430 m and 450 m above mean sea level(AMSL),than in lower levels of the fog(390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer,affecting the underlying fog by decreasing or increasing average wind speed,as well as promoting or demoting air temperature stratification.展开更多
A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal o...A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal of gas-liquid two-phase flow was preprocessed,and then the AOK theory was used to analyze the dynamic differ-ential pressure signal.The mechanism of two-phase flow was discussed through the time-frequency spectrum.On the condition of steady water flow rate,with the increasing of gas flow rate,the flow pattern changes from bubbly flow to slug flow,then to plug flow,meanwhile,the energy distribution of signal fluctuations show significant change that energy transfer from 15-35 Hz band to 0-8 Hz band;moreover,when the flow pattern is slug flow,there are two wave peaks showed in the time-frequency spectrum.Finally,a number of characteristic variables were defined by using the time-frequency spectrum and the ridge of AOK.When the characteristic variables were visu-ally analyzed,the relationship between different combination of characteristic variables and flow patterns would be gotten.The results show that,this method can explain the law of flow in different flow patterns.And characteristic variables,defined by this method,can get a clear description of the flow information.This method provides a new way for the flow pattern identification,and the percentage of correct prediction is up to 91.11%.展开更多
Advanced flow measurement and active flow control need the development of new type devices and systems.Micro-electro-mechanical systems(MEMS) technologies become the important and feasible approach for micro transduce...Advanced flow measurement and active flow control need the development of new type devices and systems.Micro-electro-mechanical systems(MEMS) technologies become the important and feasible approach for micro transducers fabrication.This paper introduces research works of MEMS/NEMS Lab in flow measurement sensors and active flow control actuators.Micro sensors include the flexible thermal sensor array,capacitive shear stress sensor and high sensitivity pressure sensor.Micro actuators are the balloon actuator and synthetic jet actuator respectively.Through wind tunnel test,these micro transducers achieve the goals of shear stress and pressure distribution measurement,boundary layer separation control,lift enhancement,etc.And unmanned aerial vehicle(UAV) flight test verifies the ability of maneuver control of micro actuator.In the future work,micro sensor and actuator can be combined into a closed-loop control system to construct aerodynamic smart skin system for aircraft.展开更多
This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a ...This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.展开更多
基金Projects(50875054,51275123)supported by the National Natural Science Foundation of ChinaProject(GZKF-2008003)supported by the Open Foundation of State Key Laboratory of Fluid Transmission and Control,China
文摘A new kind of hydraulic transformer, called variable hydraulic transformer(VHT), is proposed to control its load flow rate. The hydraulic transformer evolves from a pressure transducer to a power transducer. The flow characteristics of VHT, such as its instantaneous flow rates, average flow rates, and flow pulsations in the ports, are investigated. Matlab software is used to simulate and calculate. There are five controlled angles of the port plate that can help to define the flow characteristics of VHT. The relationships between the flow characteristics and the structure in VHT are shown. Also, the plus-minus change of the average flow rates and the continuity of the instantaneous flow rates in the ports are presented. The results demonstrate the performance laws of VHT when the controlled angles of the port plate and of the swash plate change. The results also reveal that the special principle of the flow pulsation in the ports and the jump points of the instantaneous curves are the two basic causes of its loud noise, and that the control angles of the port plate and the swash plate and the pressures in the ports are the three key factors of the noise.
基金Project supported by the National Basic Research Program (973) of China (No.2006CB705400)the National Natural Science Foundation of China (No.50575200)
文摘The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.
基金Supported by the National Natural Science Foundation of China(No.50875054)the Open Fund of State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University(No.GZKF-2008003)
文摘In order to supply theoretical guidance to hydraulic transformer's design and application,the effect of the number of plungers in hydraulic transformer on its flow characteristic is analyzed,theoretical analysis and simulation are done on hydraulic transformer's flow characteristic when the number of plungers is different.Based on the working principle of swash plate piston hydraulic components,mathematical models of instantaneous flow and flow pulsation rate are built,and simulation study is done with MATLAB.As a result,the effect is found,and some conclusions worth referring to are obtained.
基金Supported by the National Natural Science Foundation of China(Nos.51379146,51409190)the National Science Foundation for Post-Doctoral Scientists of China(No.2013M531218)
文摘To investigate the effects of flow rate on phytoplankton dynamics and related environment variables,a set of enclosure experiments with different fl ow rates were conducted in an artificial lake. We monitored nutrients,temperature,dissolved oxygen,p H,conductivity,turbidity,chlorophyll-a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s,which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light,resulting in a dramatic shift in phytoplankton composition,from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However,flow rate significantly enhanced the inter-relationships among environmental variables,in particular by inducing higher water turbidity and vegetative reproduction of periphyton( Spirogyra). These changes were accompanied by a decrease in underwater light intensity,which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist,because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.
基金supported by the National Natural Science Foundation of China (Grant Nos.41272297,41401195)the Applied Basic Research Fund of the Science and Technology Department of Sichuan Province (2014JY0121)the Key Research Fund of the Education Department of Sichuan Province (14ZA0095)
文摘The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.
文摘During last 45 years, two groups of the experimental data on critical heat flux were obtained in bare tubes, covering the pressures from atmosphere to near-critical point. One group of the data were obtained in the inner diameter of 2.32, 5.16, 8.05, 10.0 and 16.0 mm, respectively, with the ranges of pressure of 0.1-1.92 MPa, velocity of 1.47-23.3 m/s, local subcooling of 3.7-108.7 ℃ and heat flux of up to 38.3 MW/m2. Another group of the data were obtained in the inner diameter of 4.62, 7.98 and 10.89 mm, respectively, with the ranges of pressure of 1.7-20.6 MPa, mass flux of 454-4,055 kg/(m2.s) and inlet subcooling of 53-361 ℃. The results showed complicated effects of the pressure, mass flux, subcooling and diameter on the critical heat flux. They were formulated by two empirical correlations. A mechanistic model on the limit of heat transfer capability from the bubbly layer to the subcooled core was also proposed for all the results.
基金Supported by the Marine Science and Technology Projects of Shanghai Committee of Science and Technology,China(No.10DZ1210802)
文摘Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus,the turbulence characteristics of upper fog layers are poorly known. In this paper,we present 4-layers of data,measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy,momentum flux,and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset,high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold,it was crucial to enhancing the cooling rate,and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode,the vertical distribution of sensible heat flux reversed,contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog,than during the fog episode. Turbulence energy was greatest in upper levels,around 430 m and 450 m above mean sea level(AMSL),than in lower levels of the fog(390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer,affecting the underlying fog by decreasing or increasing average wind speed,as well as promoting or demoting air temperature stratification.
基金Supported by the Natural Science Foundation of Zhejiang Province(Y1100842) the Planning Projects of General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China(2006QK23)
文摘A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal of gas-liquid two-phase flow was preprocessed,and then the AOK theory was used to analyze the dynamic differ-ential pressure signal.The mechanism of two-phase flow was discussed through the time-frequency spectrum.On the condition of steady water flow rate,with the increasing of gas flow rate,the flow pattern changes from bubbly flow to slug flow,then to plug flow,meanwhile,the energy distribution of signal fluctuations show significant change that energy transfer from 15-35 Hz band to 0-8 Hz band;moreover,when the flow pattern is slug flow,there are two wave peaks showed in the time-frequency spectrum.Finally,a number of characteristic variables were defined by using the time-frequency spectrum and the ridge of AOK.When the characteristic variables were visu-ally analyzed,the relationship between different combination of characteristic variables and flow patterns would be gotten.The results show that,this method can explain the law of flow in different flow patterns.And characteristic variables,defined by this method,can get a clear description of the flow information.This method provides a new way for the flow pattern identification,and the percentage of correct prediction is up to 91.11%.
基金National Natural Science Foundation of China (No. 90305017No. 50775188No. 51105317)
文摘Advanced flow measurement and active flow control need the development of new type devices and systems.Micro-electro-mechanical systems(MEMS) technologies become the important and feasible approach for micro transducers fabrication.This paper introduces research works of MEMS/NEMS Lab in flow measurement sensors and active flow control actuators.Micro sensors include the flexible thermal sensor array,capacitive shear stress sensor and high sensitivity pressure sensor.Micro actuators are the balloon actuator and synthetic jet actuator respectively.Through wind tunnel test,these micro transducers achieve the goals of shear stress and pressure distribution measurement,boundary layer separation control,lift enhancement,etc.And unmanned aerial vehicle(UAV) flight test verifies the ability of maneuver control of micro actuator.In the future work,micro sensor and actuator can be combined into a closed-loop control system to construct aerodynamic smart skin system for aircraft.
文摘This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.