Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography(ECT) technique is considered as a promising visualiza...Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography(ECT) technique is considered as a promising visualization method for the flow pattern identification,in which image reconstruction algorithms play an important role.In this paper,a generalized dynamic reconstruction model,which integrates ECT measurement information and physical evolution information of the objects of interest,was presented.A generalized objective functional that simultaneously considers the spatial constraints,temporal constraints and dynamic evolution information of the objects of interest was proposed.Numerical simulations and experiments were implemented to evaluate the feasibility and efficiency of the proposed algorithm.For the cases considered in this paper,the proposed algorithm can well reconstruct the flow patterns,and the quality of the reconstructed images is improved,which indicates that the proposed algorithm is competent to reconstruct the flow patterns in the visualization of multiphase flows.展开更多
By using the variable separation approach, which is based on the corresponding Backlund transformation, new exact solutions of a (1+1)-dimensional nonlinear evolution equation are obtained. Abundant new soliton mot...By using the variable separation approach, which is based on the corresponding Backlund transformation, new exact solutions of a (1+1)-dimensional nonlinear evolution equation are obtained. Abundant new soliton motions of the potential field can be found by selecting appropriate functions.展开更多
We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at. each time step. And the cliques in the network overlap with each othe...We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at. each time step. And the cliques in the network overlap with each other. The structural expansion of the weighted clique network is combined with the edges' weight and vertices' strengths dynamical evolution. The model is based on a weight-driven dynamics and a weights' enhancement mechanism combining with the network growth. We study the network properties, which include the distribution of vertices' strength and the distribution o~ edges' weight, and find that both the distributions follow the scale-free distribution. At the same time, we also find that the relationship between strength and degree of a vertex are linear correlation during the growth of the network. On the basis of mean-field theory, we study the weighted network model and prove that both vertices' strength and edges' weight of this model follow the scale-free distribution. And we exploit an algorithm to forecast the network dynamics, which can be used to reckon the distributions and the corresponding scaling exponents. Furthermore, we observe that mean-field based theoretic results are consistent with the statistical data of the model, which denotes the theoretical result in this paper is effective.展开更多
Higher-order topological phases(HOTPs) are systems with topologically protected in-gap boundary states localized at their ed à nT-dimensional boundaries, with d the system dimension and n the order of the topolog...Higher-order topological phases(HOTPs) are systems with topologically protected in-gap boundary states localized at their ed à nT-dimensional boundaries, with d the system dimension and n the order of the topology. This work proposes a dynamics-based characterization of one large class of Z-type HOTPs without specifically relying on any crystalline symmetry considerations. The key element of our innovative approach is to connect quantum quench dynamics with nested configurations of the socalled band inversion surfaces(BISs) of momentum-space Hamiltonians as a sum of operators from the Clifford algebra(a condition that can be partially relaxed), thereby making it possible to dynamically detect each and every order of topology on an equal footing. Given that experiments on synthetic topological matter can directly measure the winding of certain pseudospin texture to determine topological features of BISs, the topological invariants defined through nested BISs are all within reach of ongoing experiments. Further, the necessity of having nested BISs in defining higher-order topology offers a unique perspective to investigate and engineer higher-order topological phase transitions.展开更多
The dynamic evolution of a multi-level atom in the three-dimensional photonic crystal under an applied magnetic field is investigated.By combining the Zeeman effect with the photonic band gap effect,the dynamic quantu...The dynamic evolution of a multi-level atom in the three-dimensional photonic crystal under an applied magnetic field is investigated.By combining the Zeeman effect with the photonic band gap effect,the dynamic quantum superposition states and steady quantum coherent trapping states of the atom can be flexibly controlled.This paves the way for coherent manipulation of quantum states in the solid-state system,which has important applications in quantum information processing.展开更多
In this paper we have studied the dynamical evolution of Shannon information entropies in position and momentum spaces for two classes of(nonstationary) atom-field entangled states,which are obtained via the JaynesC...In this paper we have studied the dynamical evolution of Shannon information entropies in position and momentum spaces for two classes of(nonstationary) atom-field entangled states,which are obtained via the JaynesCummings model and its generalization.We have focused on the interaction between two- and(1)-type three-level atoms with the single-mode quantized field.The three-dimensional plots of entropy densities in position and momentum spaces are presented versus corresponding coordinates and time,numerically.It is observed that for particular values of the parameters of the systems,the entropy squeezing in position space occurs.Finally,we have shown that the well-known BBM(Beckner,Bialynicki-Birola and Mycielsky) inequality,which is a stronger statement of the Heisenberg uncertainty relation,is properly satisfied.展开更多
The field entropy of the system with two moving atoms interacting with the coherent state is investigated by means of the full quantum theory. Under the different initial states with two atoms, the influences of the l...The field entropy of the system with two moving atoms interacting with the coherent state is investigated by means of the full quantum theory. Under the different initial states with two atoms, the influences of the light field intensity and the atomic motion on the field entropy are discussed. The results indicate that the motion of the atoms leads to strict periodicity in the field entropy evolution. When the two atoms are in the Bell state |β11〉 initially, the system is in a completely disentangled state. For the atoms initially at other Bell states, the field periodically entangles with the atoms.展开更多
We investigate the dynamics of the precision of the parameter estimation in many driven atoms, each of which interacts with a local structured bosonic reservoir respectively. The evolution of quantum states for single...We investigate the dynamics of the precision of the parameter estimation in many driven atoms, each of which interacts with a local structured bosonic reservoir respectively. The evolution of quantum states for single driven atom is described by the time local quantum master equation. The dynamics of the quantum Fisher information for many entangled atoms is obtained by means of the supreoperator mapping. The estimation limit is superior to the standard quantum limit during a characteristic interval. At a given time, the precision of parameter estimation can be improved to a maximal value if the number of entangled atoms is chosen to be an optimal value. The optimal number of entangled atoms is determined by the dynamical property. The decay of quantum Fisher information is accelerated with the increase of the number of entangled atoms.展开更多
The concepts and methods used for the study of disordered systems have proven useful in the analysis of the evolution equations of quantum chromodynamics in the high-energy regime: Indeed, parton branching in the semi...The concepts and methods used for the study of disordered systems have proven useful in the analysis of the evolution equations of quantum chromodynamics in the high-energy regime: Indeed, parton branching in the semi-classical approximation relevant at high energies and at a fixed impact parameter is a peculiar branching-diffusion process, and parton branching supplemented by saturation effects(such as gluon recombination) is a reaction-diffusion process. In this review article, we first introduce the basic concepts in the context of simple toy models, we study the properties of the latter, and show how the results obtained for the simple models may be taken over to quantum chromodynamics.展开更多
Recently, a new dark energy model called AHDE was proposed. In this model, dark energy consists of two parts: cosmological constant A and holographic dark energy (HDE). Two key parameters of this model are the frac...Recently, a new dark energy model called AHDE was proposed. In this model, dark energy consists of two parts: cosmological constant A and holographic dark energy (HDE). Two key parameters of this model are the fractional density of cosmological constant Ω2A0, and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ΩA0 and c on the AHDE model. In this paper, we apply various DE diagnostic tools to diagnose AHDE models with different values of ΩA0 and c; these tools include statefinder hierarchy {S3^(1) ,S4(1)fractional growth parameter E, and composite null diagnostic (CND), which is a combination of{S3(1),S4(1)} and E. We find that: (1) adopting different values of ΩA0 only has quantitative impacts on the evolution of the AHDE model, while adopting different c has qualitative impacts; (2) compared with S(1), S(41) can give larger differences among the cosmic evolutions of the AHDE model associated with different ΩA0 or different c; (3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the AHDE model.展开更多
基金Supported by the National Natural Science Foundation of China (50736002,50806005,51006106)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0952)
文摘Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography(ECT) technique is considered as a promising visualization method for the flow pattern identification,in which image reconstruction algorithms play an important role.In this paper,a generalized dynamic reconstruction model,which integrates ECT measurement information and physical evolution information of the objects of interest,was presented.A generalized objective functional that simultaneously considers the spatial constraints,temporal constraints and dynamic evolution information of the objects of interest was proposed.Numerical simulations and experiments were implemented to evaluate the feasibility and efficiency of the proposed algorithm.For the cases considered in this paper,the proposed algorithm can well reconstruct the flow patterns,and the quality of the reconstructed images is improved,which indicates that the proposed algorithm is competent to reconstruct the flow patterns in the visualization of multiphase flows.
基金The project supported by National Natural Science Foundation of China under Grant No. 10501040
文摘By using the variable separation approach, which is based on the corresponding Backlund transformation, new exact solutions of a (1+1)-dimensional nonlinear evolution equation are obtained. Abundant new soliton motions of the potential field can be found by selecting appropriate functions.
基金Supported by National Natural Science Foundation of China under Grant Nos. 60504027 and 60874080the Open Project of State Key Lab of Industrial Control Technology under Grant No. ICT1107
文摘We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at. each time step. And the cliques in the network overlap with each other. The structural expansion of the weighted clique network is combined with the edges' weight and vertices' strengths dynamical evolution. The model is based on a weight-driven dynamics and a weights' enhancement mechanism combining with the network growth. We study the network properties, which include the distribution of vertices' strength and the distribution o~ edges' weight, and find that both the distributions follow the scale-free distribution. At the same time, we also find that the relationship between strength and degree of a vertex are linear correlation during the growth of the network. On the basis of mean-field theory, we study the weighted network model and prove that both vertices' strength and edges' weight of this model follow the scale-free distribution. And we exploit an algorithm to forecast the network dynamics, which can be used to reckon the distributions and the corresponding scaling exponents. Furthermore, we observe that mean-field based theoretic results are consistent with the statistical data of the model, which denotes the theoretical result in this paper is effective.
基金the Singapore Ministry of Education Academic Research Fund Tier-3 Grant No.MOE2017T3-1-001(WBS.No.R-144-000-425-592)the Singapore National Research Foundation Grant No.NRF-NRFI2017-04(WBS No.R-144-000-378-281)。
文摘Higher-order topological phases(HOTPs) are systems with topologically protected in-gap boundary states localized at their ed à nT-dimensional boundaries, with d the system dimension and n the order of the topology. This work proposes a dynamics-based characterization of one large class of Z-type HOTPs without specifically relying on any crystalline symmetry considerations. The key element of our innovative approach is to connect quantum quench dynamics with nested configurations of the socalled band inversion surfaces(BISs) of momentum-space Hamiltonians as a sum of operators from the Clifford algebra(a condition that can be partially relaxed), thereby making it possible to dynamically detect each and every order of topology on an equal footing. Given that experiments on synthetic topological matter can directly measure the winding of certain pseudospin texture to determine topological features of BISs, the topological invariants defined through nested BISs are all within reach of ongoing experiments. Further, the necessity of having nested BISs in defining higher-order topology offers a unique perspective to investigate and engineer higher-order topological phase transitions.
基金supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2006CB921706 and 2010CB923200)the National Natural Science Foundation of China (Grant Nos. 10574160 and10725420)
文摘The dynamic evolution of a multi-level atom in the three-dimensional photonic crystal under an applied magnetic field is investigated.By combining the Zeeman effect with the photonic band gap effect,the dynamic quantum superposition states and steady quantum coherent trapping states of the atom can be flexibly controlled.This paves the way for coherent manipulation of quantum states in the solid-state system,which has important applications in quantum information processing.
文摘In this paper we have studied the dynamical evolution of Shannon information entropies in position and momentum spaces for two classes of(nonstationary) atom-field entangled states,which are obtained via the JaynesCummings model and its generalization.We have focused on the interaction between two- and(1)-type three-level atoms with the single-mode quantized field.The three-dimensional plots of entropy densities in position and momentum spaces are presented versus corresponding coordinates and time,numerically.It is observed that for particular values of the parameters of the systems,the entropy squeezing in position space occurs.Finally,we have shown that the well-known BBM(Beckner,Bialynicki-Birola and Mycielsky) inequality,which is a stronger statement of the Heisenberg uncertainty relation,is properly satisfied.
基金supported by the National Natural Science Foundation of Chinathe Nataral Science Foundation of Inner Mongolia of Chinathe Science Fund of Universiey in Inner Mongolia of China
文摘The field entropy of the system with two moving atoms interacting with the coherent state is investigated by means of the full quantum theory. Under the different initial states with two atoms, the influences of the light field intensity and the atomic motion on the field entropy are discussed. The results indicate that the motion of the atoms leads to strict periodicity in the field entropy evolution. When the two atoms are in the Bell state |β11〉 initially, the system is in a completely disentangled state. For the atoms initially at other Bell states, the field periodically entangles with the atoms.
基金Supported by the National Natural Science Foundation of China under Grant No.11274054the Creative Project of Graduate in University of Suzhou Science and Technology in No.SKCX16-006the Innovation Project of Graduate Education of Jiangsu Province No.JGLX15-150
文摘We investigate the dynamics of the precision of the parameter estimation in many driven atoms, each of which interacts with a local structured bosonic reservoir respectively. The evolution of quantum states for single driven atom is described by the time local quantum master equation. The dynamics of the quantum Fisher information for many entangled atoms is obtained by means of the supreoperator mapping. The estimation limit is superior to the standard quantum limit during a characteristic interval. At a given time, the precision of parameter estimation can be improved to a maximal value if the number of entangled atoms is chosen to be an optimal value. The optimal number of entangled atoms is determined by the dynamical property. The decay of quantum Fisher information is accelerated with the increase of the number of entangled atoms.
文摘The concepts and methods used for the study of disordered systems have proven useful in the analysis of the evolution equations of quantum chromodynamics in the high-energy regime: Indeed, parton branching in the semi-classical approximation relevant at high energies and at a fixed impact parameter is a peculiar branching-diffusion process, and parton branching supplemented by saturation effects(such as gluon recombination) is a reaction-diffusion process. In this review article, we first introduce the basic concepts in the context of simple toy models, we study the properties of the latter, and show how the results obtained for the simple models may be taken over to quantum chromodynamics.
基金supported by the National Natural Science Foundation of China(Grant No.11405024)
文摘Recently, a new dark energy model called AHDE was proposed. In this model, dark energy consists of two parts: cosmological constant A and holographic dark energy (HDE). Two key parameters of this model are the fractional density of cosmological constant Ω2A0, and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ΩA0 and c on the AHDE model. In this paper, we apply various DE diagnostic tools to diagnose AHDE models with different values of ΩA0 and c; these tools include statefinder hierarchy {S3^(1) ,S4(1)fractional growth parameter E, and composite null diagnostic (CND), which is a combination of{S3(1),S4(1)} and E. We find that: (1) adopting different values of ΩA0 only has quantitative impacts on the evolution of the AHDE model, while adopting different c has qualitative impacts; (2) compared with S(1), S(41) can give larger differences among the cosmic evolutions of the AHDE model associated with different ΩA0 or different c; (3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the AHDE model.