针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印...针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印算法。首先在首帧语音中嵌入同步序列,然后求出每帧的短时能量并对大于设定阈值的语音帧进行小波变换,最后利用以LRMS准则构建的神经网络实现水印的嵌入和提取。通过合理设定短时能量阈值,实现了水印容量和鲁棒性的平衡,而采用Levenberg-Marguardt(LM)算法迅速地让网络收敛。理论分析和实验结果表明,与文献[8]相比,本文提出的神经网络方案收敛速度更快,对于噪声、低通滤波、重采样和重量化等攻击有更强的鲁棒性,性能平均提高了5%。展开更多
为降低电磁干扰对信号传输的影响,分析了应答器上行链路信号传输过程及其易遭受干扰信号的特点,设计了基于符号最小均方误差(least mean square,LMS)算法的自适应解调方法。为在硬件平台中实现该解调方法,通过仿真计算,确定LMS算法的自...为降低电磁干扰对信号传输的影响,分析了应答器上行链路信号传输过程及其易遭受干扰信号的特点,设计了基于符号最小均方误差(least mean square,LMS)算法的自适应解调方法。为在硬件平台中实现该解调方法,通过仿真计算,确定LMS算法的自适应算法中间变量变化范围,使用截位操作完成权值系数的更新,设置均衡器长度、步长因子、中值滤波系数分别为1、1/64、16,可在不占用过多硬件资源情况下获得良好的解调性能。解调算法在现场可编程门阵列(field programmable gata array,FPGA)上予以验证,实验表明,当信噪比为6 dB时,FPGA中自适应解调误码率为0.000001,在信噪比大于等于6 dB时,实测误码率与仿真分析误码率基本一致;FPGA自适应解调方法在列车不同速度等级下误码率均小于10^(-6)。展开更多
文摘针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印算法。首先在首帧语音中嵌入同步序列,然后求出每帧的短时能量并对大于设定阈值的语音帧进行小波变换,最后利用以LRMS准则构建的神经网络实现水印的嵌入和提取。通过合理设定短时能量阈值,实现了水印容量和鲁棒性的平衡,而采用Levenberg-Marguardt(LM)算法迅速地让网络收敛。理论分析和实验结果表明,与文献[8]相比,本文提出的神经网络方案收敛速度更快,对于噪声、低通滤波、重采样和重量化等攻击有更强的鲁棒性,性能平均提高了5%。