机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为...机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为了实现对钻速的高精度预测,对现有BP (back propagation)神经网络进行优化,提出了一种新的神经网络模型,即动态自适应学习率的粒子群优化BP神经网络,利用录井数据建立目标井预测模型来对钻速进行预测。在训练过程中对BP神经网络进行优化,利用启发式算法,即附加动量法和自适应学习率,将两种方法结合起来形成动态自适应学习率的BP改进算法,提高了BP神经网络的训练速度和拟合精度,获得了更好的泛化性能。将BP神经网络与遗传优化算法(genetic algorithm,GA)和粒子群优化算法(particle swarm optimization,PSO)结合,得到优化后的动态自适应学习率BP神经网络。研究利用XX8-1-2井的录井数据进行实验,对比BP神经网络、PSO-BP神经网络、GA-BP神经网络3种不同的改进后神经网络的预测结果。实验结果表明:优化后的PSO-BP神经网络的预测性能最好,具有更高的效率和可靠性,能够有效的利用工程数据,在有一定数据采集量的区域提供较为准确的ROP预测。展开更多
在船舶设计过程中经常会出现随机新设计任务,为船舶设计任务调度方案的制订带来一定的困难。基于反向传播(Back Propagation, BP)算法,引入动量-自适应学习率反向传播(Momentum and Self-Adaptive Learning Rate Back Propagation, MSBP...在船舶设计过程中经常会出现随机新设计任务,为船舶设计任务调度方案的制订带来一定的困难。基于反向传播(Back Propagation, BP)算法,引入动量-自适应学习率反向传播(Momentum and Self-Adaptive Learning Rate Back Propagation, MSBP)算法预测随机新设计任务是否可加入制订的船舶设计任务调度方案,以解决扰动情况下的船舶设计任务动态调度(Dynamic Scheduling of Ship Design Tasks, DSSDT)问题。为减小求解空间和训练难度,选择对调度结果具有重大影响的属性作为MSBP算法的特征值。基于抽取的特征值构建MSBP算法模型,并采用大量数据完成对模型的训练。对比试验结果表明,MSBP算法的准确性优于未改进的BP算法,某项随机新设计任务的可调度性与其优先级最为密切。展开更多