期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
全国私人车辆拥有量的BP神经网络模型预测与分析——基于附加动量与自适应学习速率相结合的BP方法 被引量:3
1
作者 陈正 丁姝 王俊林 《西安财经学院学报》 CSSCI 2015年第6期98-102,共5页
私人车辆拥有量的变化趋势与社会经济发展密切相关,研究与预测私人车辆拥有量变动对了解社会经济发展具有重要的意义。文章以1985—2013年全国私人车辆拥有量的发展情况为研究对象,利用附加动量法与自适应学习速率相结合的BP神经网络模... 私人车辆拥有量的变化趋势与社会经济发展密切相关,研究与预测私人车辆拥有量变动对了解社会经济发展具有重要的意义。文章以1985—2013年全国私人车辆拥有量的发展情况为研究对象,利用附加动量法与自适应学习速率相结合的BP神经网络模型对全国私人车辆拥有量进行研究与预测,结果表明利用该模型对私人车辆拥有量进行预测的精度较高、效果好。 展开更多
关键词 私人车辆拥有量 BP神经网络 附加动量 自适应学习速率 预测模型
下载PDF
神经网络动量-自适应学习率BP算法与BP算法的性能比较及其应用 被引量:7
2
作者 金仁杰 《微型电脑应用》 2001年第7期30-32,共3页
动量 -自适应学习率 BP算法是对标准 BP算法的改进 ,本文对这两种算法进行了分析 ,并利用计算机程序对其性能进行了比较测试 ,利用 VISU AL C++和 MATL
关键词 神经网络 动量-自适应学习 BP算法 数学模型
下载PDF
动量-自适应学习BP算法在加工领域的探索 被引量:2
3
作者 耿胜财 胡玉兰 《沈阳理工大学学报》 CAS 2018年第3期1-4,9,共5页
为解决实际加工中试验次数多生产成本高、选取加工参数困难等问题,采用动量-自适应学习BP算法构建BP神经网络预测模型。根据实际情况将典型BP算法改进,得到收敛速度快的动量-自适应学习BP算法模型;用电解加工试验数据对模型结构进行训练... 为解决实际加工中试验次数多生产成本高、选取加工参数困难等问题,采用动量-自适应学习BP算法构建BP神经网络预测模型。根据实际情况将典型BP算法改进,得到收敛速度快的动量-自适应学习BP算法模型;用电解加工试验数据对模型结构进行训练,最终建立动量-自适应学习BP神经网络加工预测模型。采用该模型对不同加工参数组合下加工的不锈钢微孔孔径大小进行预测。结果表明,该模型的预测误差低于5%,具有很强的预测能力。 展开更多
关键词 动量-自适应学习算法 BP神经网络 电解加工
下载PDF
动量自适应学习速率梯度下降法神经网络电力负荷预测 被引量:4
4
作者 关小芳 《电气开关》 2014年第5期49-51,共3页
电力系统负荷预测的精度将直接影响电力系统的经济效益和用电的安全和稳定,是电力负荷预测的重要组成部分。利用人工神经网络可以任意逼近非线性系统的特性,将其用于短期负荷预测。在标准的BP网络中加入了动量项和自适应学习速率,预测... 电力系统负荷预测的精度将直接影响电力系统的经济效益和用电的安全和稳定,是电力负荷预测的重要组成部分。利用人工神经网络可以任意逼近非线性系统的特性,将其用于短期负荷预测。在标准的BP网络中加入了动量项和自适应学习速率,预测结果表明比标准BP算法具有更好的性能。在相同的情况下,连续预测六天的负荷和一年的负荷,结果都证明了研究方法具有一定的实用性。 展开更多
关键词 神经网络 负荷预测 BP算法 动量 自适应学习速率
下载PDF
基于自适应学习速率的模糊神经网络控制器 被引量:4
5
作者 邹彦艳 孙晶 +1 位作者 邵克勇 李征璐 《化工自动化及仪表》 CAS 2015年第8期855-859,共5页
针对模糊神经网络控制器中很难确定一个最佳学习速率的问题,将带有动量因子的自适应学习速率BP算法引入模糊神经网络控制器中。采用模糊推理自适应调节学习速率,同时引入动量因子,提高系统的收敛速度,并基于Lyapunov定理给出了系统稳定... 针对模糊神经网络控制器中很难确定一个最佳学习速率的问题,将带有动量因子的自适应学习速率BP算法引入模糊神经网络控制器中。采用模糊推理自适应调节学习速率,同时引入动量因子,提高系统的收敛速度,并基于Lyapunov定理给出了系统稳定的证明过程。针对同一数学模型,用Matlab编程仿真3种方法的实验结果表明:优化后的模糊神经网络控制器较普通模糊神经网络控制器和模糊控制器具有更优越的控制性能。 展开更多
关键词 模糊神经网络控制器 自适应学习速率 动量因子 BP算法 MATLAB仿真
下载PDF
动量-自适应BP算法在机器人碰撞检测仿真系统中的应用 被引量:1
6
作者 李元 陈一民 《上海大学学报(自然科学版)》 CAS CSCD 1999年第S1期18-24,共7页
根据机器人运动连续性原理,通过对误差脉冲数的统计分析,我们基于人工神经网络算法,实现了机器人碰撞检测仿真系统 根据从机器人运行时采集的数据对神经网络进行训练和仿真,在实际应用中取得了预期的效果 本文讨论了动量-自适应学习率B... 根据机器人运动连续性原理,通过对误差脉冲数的统计分析,我们基于人工神经网络算法,实现了机器人碰撞检测仿真系统 根据从机器人运行时采集的数据对神经网络进行训练和仿真,在实际应用中取得了预期的效果 本文讨论了动量-自适应学习率BP算法,说明了通过误差脉冲数进行碰撞检测的原理,比较了它与传统方法的区别,并且根据神经网络训练和仿真结果对动量-自适应学习率BP算法和标准BP算法进行了比较. 展开更多
关键词 机器人 碰撞检测 神经网络 动量-自适应学习
下载PDF
基于核自组织映射-前馈神经网络的交通流短时预测 被引量:12
7
作者 龚勃文 林赐云 +1 位作者 李静 杨兆升 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第4期938-943,共6页
提出了一种基于KSOM-BP神经网络的交通流短时预测模型。利用基于核函数的样本自组织映射神经网络(KSOM),在没有任何先验知识的情况下,自组织、自学习地将具有相似统计特性的历史样本划分成一类,促使分类样本统计特性更集中显著。对每个... 提出了一种基于KSOM-BP神经网络的交通流短时预测模型。利用基于核函数的样本自组织映射神经网络(KSOM),在没有任何先验知识的情况下,自组织、自学习地将具有相似统计特性的历史样本划分成一类,促使分类样本统计特性更集中显著。对每个类别的样本分别建立动量-自适应学习速率的BP神经网络预测模型,以期提高交通流短时预测精度,减少预测时间。结合实际城市道路数据对模型进行验证。验证结果表明:KSOM-BP神经网络的预测误差统计指标MARE小于7%,比基于全部样本训练的BP神经网络的MARE减少4%左右;同时,KSOM-BP神经网络建模时间更短,证明了本文方法的有效性和先进性。 展开更多
关键词 交通运输系统工程 交通流短时预测 样本分类拟合 KSOM-BP神经网络 动量-自适应学习速率
下载PDF
基于自适应BP网络的涌潮波速计算模型 被引量:1
8
作者 廖迎娣 张玮 《海洋工程》 CSCD 北大核心 2003年第4期70-74,共5页
运用BP网络附加动量法和自适应学习速率法,建立神经网络模型,模拟计算涌潮波速。根据部分试验数据对网络进行训练,确定相关参数,建立涌潮波速计算模型,同时利用其余部分试验数据对模型进行检验,模拟结果与试验数据吻合较好,相关程度高,... 运用BP网络附加动量法和自适应学习速率法,建立神经网络模型,模拟计算涌潮波速。根据部分试验数据对网络进行训练,确定相关参数,建立涌潮波速计算模型,同时利用其余部分试验数据对模型进行检验,模拟结果与试验数据吻合较好,相关程度高,表明神经网络模型用于计算涌潮波速是合适的。 展开更多
关键词 涌潮 波速 人工神经网络 BP网络 附加动量 自适应学习速率 计算模型
下载PDF
船舶设计任务动态调度预测
9
作者 李敬花 杨易 何沁园 《造船技术》 2024年第5期8-15,共8页
在船舶设计过程中经常会出现随机新设计任务,为船舶设计任务调度方案的制订带来一定的困难。基于反向传播(Back Propagation, BP)算法,引入动量-自适应学习率反向传播(Momentum and Self-Adaptive Learning Rate Back Propagation, MSBP... 在船舶设计过程中经常会出现随机新设计任务,为船舶设计任务调度方案的制订带来一定的困难。基于反向传播(Back Propagation, BP)算法,引入动量-自适应学习率反向传播(Momentum and Self-Adaptive Learning Rate Back Propagation, MSBP)算法预测随机新设计任务是否可加入制订的船舶设计任务调度方案,以解决扰动情况下的船舶设计任务动态调度(Dynamic Scheduling of Ship Design Tasks, DSSDT)问题。为减小求解空间和训练难度,选择对调度结果具有重大影响的属性作为MSBP算法的特征值。基于抽取的特征值构建MSBP算法模型,并采用大量数据完成对模型的训练。对比试验结果表明,MSBP算法的准确性优于未改进的BP算法,某项随机新设计任务的可调度性与其优先级最为密切。 展开更多
关键词 船舶 设计任务 随机新设计任务 调度预测 船舶设计任务动态调度 反向传播算法 动量-自适应学习率反向传播算法
下载PDF
海战场多传感器目标识别中神经网络的应用研究 被引量:4
10
作者 刘楠楠 张永利 宋鹏汉 《中国电子科学研究院学报》 北大核心 2020年第5期427-434,共8页
由于海面目标所处的海战场环境的复杂性,以及海面目标探测获取的状态数据的不确定、缺失、模糊以及动态变化等,使得海面目标的综合识别非常困难。为了解决这些问题,需要对海战场多传感器目标综合识别中采用智能的神经网络进行应用研究... 由于海面目标所处的海战场环境的复杂性,以及海面目标探测获取的状态数据的不确定、缺失、模糊以及动态变化等,使得海面目标的综合识别非常困难。为了解决这些问题,需要对海战场多传感器目标综合识别中采用智能的神经网络进行应用研究。文中提出一种特征级采用LMBP神经网络算法,从多维度学习训练多传感器获取的数据,提取更多相关细节的目标特征属性信息,决策级采用证据理论的智能算法模型,即列文伯格误差反向传播结合证据理论算法的目标综合识别算法(Levenberg Marquardt Back Propagation-Dempster Shafer,简称LMBP-DS算法);然后通过Matlab仿真实验,比较不同的隐藏节点数对识别率的影响,找到LMBP-DS算法最佳的神经网络结构;通过对比实验得出:LMBP-DS算法比动量自适应学习BP-DS算法具有更快的收敛速度,同时具有更稳健高效的识别正确率,从而更适用于海战场多传感器目标综合识别。 展开更多
关键词 海战场 目标综合识别 神经网络 动量-自适应学习速率 LMBP-DS
下载PDF
醇解度预测的神经网络模型研究 被引量:1
11
作者 刘云枫 王晓慧 +1 位作者 翟东升 赵新亮 《计算机测量与控制》 CSCD 北大核心 2010年第12期2748-2751,共4页
针对聚乙烯醇生产过程的醇解度预测问题,建立神经网络模型;对醇解度的影响因素进行了研究,讨论了输入层、输出层、隐含层等神经元的设置及网络训练的参数,比较了梯度下降BP算法、动量-自适应学习速率调整算法、Levenberg-Marquardt BP... 针对聚乙烯醇生产过程的醇解度预测问题,建立神经网络模型;对醇解度的影响因素进行了研究,讨论了输入层、输出层、隐含层等神经元的设置及网络训练的参数,比较了梯度下降BP算法、动量-自适应学习速率调整算法、Levenberg-Marquardt BP算法三种不同的训练算法在本问题上的优劣,并与RBF网络相比较,综合考虑训练时间、训练精度、泛化能力等条件,动量-自适应学习速率调整算法是最适合醇解度预测的,并基于动量-自适应学习速率调整算法建立了神经网络模型;将模型应用于醇解度预测系统,系统实际运行情况表明,利用神经网络模型预测醇解度是可行有效的。 展开更多
关键词 醇解度 神经网络 动量-自适应学习速率调整算法 径向基网络
下载PDF
基于改进BP神经网络的全社会用电量预测模型研究 被引量:12
12
作者 谭显东 胡兆光 +2 位作者 李存斌 丁伟 刘达 《华北电力大学学报(自然科学版)》 CAS 北大核心 2007年第3期85-89,共5页
采用引入附加动量和自适应学习率的BP(Back Propagation)神经网络来构建全社会用电量预测模型,此模型有效地解决了标准BP神经网络容易陷入局部极小点和收敛速度慢的问题,并且能够很好地解决全社会用电量与其影响因素之间复杂的非线性... 采用引入附加动量和自适应学习率的BP(Back Propagation)神经网络来构建全社会用电量预测模型,此模型有效地解决了标准BP神经网络容易陷入局部极小点和收敛速度慢的问题,并且能够很好地解决全社会用电量与其影响因素之间复杂的非线性关系.利用MATLAB7.0对该模型进行了设计,并用设计好的模型对1986~2005年的全社会用电量及GDP数据进行了仿真,仿真结果表明该模型收敛速度快、拟合效果好、泛化能力强、预测精度高.运用该模型对2006年全社会用电量进行了预测,预测结果表明该模型具有一定的实用价值. 展开更多
关键词 BP神经网络 全社会用电量 预测 动量 自适应学习速率
下载PDF
降雨径流模拟神经网络模型及应用 被引量:9
13
作者 包红军 李致家 王莉莉 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2009年第5期719-722,共4页
针对水文系统的非线性,构建了基于遗传算法和人工神经网络的降雨径流模拟神经网络模型(GA-BP模型).采用附加动量法和自适应学习速率对BP神经网络进行改进,遗传算法用于优化神经网络的初始权重.以大别山及皖南山区月潭流域为例,将GA-BP... 针对水文系统的非线性,构建了基于遗传算法和人工神经网络的降雨径流模拟神经网络模型(GA-BP模型).采用附加动量法和自适应学习速率对BP神经网络进行改进,遗传算法用于优化神经网络的初始权重.以大别山及皖南山区月潭流域为例,将GA-BP模型、BP模型以及新安江模型应用于水文日径流过程模拟,进行应用比较以及分析GA-BP模型在水文径流模拟过程中的难点及其可行性.结果表明,GA-BP模型优化了网络结构,加快了算法收敛速率;可以用于降雨径流过程模拟,也为今后类似研究提供一种模拟技术.在实际应用中可以根据流域资料情况选择合适的模型进行水文模拟作业. 展开更多
关键词 降雨径流模拟 人工神经网络 遗传算法 附加动量 自适应学习速率 新安江模型 月潭流域
下载PDF
基于改进神经网络的SMT回流焊温度曲线预测 被引量:3
14
作者 郭瑜 孙志礼 +1 位作者 潘尔顺 杨强 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第12期1749-1752,共4页
在实际生产中,SMT回流焊工艺通常以实验方法预测温度曲线,其高成本低效率是目前亟待解决的问题.针对温度曲线输入参数与曲线多重特征值间的非线性映射关系,提出基于BP神经网络技术的温度曲线预测模型.针对训练中出现的不足,改进了误差... 在实际生产中,SMT回流焊工艺通常以实验方法预测温度曲线,其高成本低效率是目前亟待解决的问题.针对温度曲线输入参数与曲线多重特征值间的非线性映射关系,提出基于BP神经网络技术的温度曲线预测模型.针对训练中出现的不足,改进了误差计算方法和权值调整方式,消除了预测样本次序对网络的影响,提高了网络训练速度.利用MAPE评估方法将网络预测结果与某公司实际生产数据进行对比,结果显示预测值满足企业生产误差精度要求,因此所建立的神经网络可以有效地进行温度曲线预测,为企业回流焊生产工艺规划提供指导. 展开更多
关键词 回流焊 温度曲线 神经网络 BP算法 动量-自适应学习
下载PDF
基于改进BP神经网络的数字识别 被引量:12
15
作者 王婷 江文辉 肖南峰 《电子设计工程》 2011年第3期108-112,共5页
针对BP(Back Propagation)神经网络易陷入局部极小、收敛速度慢的缺点,提出了一种新的BP神经网络改进算法。与标准BP算法比较,该系统通过结合附加动量法和自适应学习速率形成新的BP改进算法。附加动量法虽然可以使BP算法避免陷入局部极... 针对BP(Back Propagation)神经网络易陷入局部极小、收敛速度慢的缺点,提出了一种新的BP神经网络改进算法。与标准BP算法比较,该系统通过结合附加动量法和自适应学习速率形成新的BP改进算法。附加动量法虽然可以使BP算法避免陷入局部极小,但是对初始值的选取比较敏感,而且选取合适的学习速率比较困难。而自适应学习速率法可以自动把学习速率调整到一个合适的数值,也可以加快网络的收敛速度,但不能避免陷入局部极小。通过将两者结合起来形成新的改进算法,既可以避免陷入局部极小又可以加快网络的收敛速度。并在此基础上设计一个基于BP神经网络的数字识别系统,此系统可以作为核心部分应用到诸如票据等数字识别中去。实验结果表明,该方法成功的避免了BP算法陷入局部极小,而且收敛速度比标准BP算法提高了17.5倍。 展开更多
关键词 BP神经网络 数字识别 附加动量 自适应学习速率
下载PDF
改进BP算法在公路工程主材价格预测中的应用研究 被引量:1
16
作者 徐家兵 祁志国 +2 位作者 杭文 何杰 李旭宏 《公路交通科技》 CAS CSCD 北大核心 2008年第4期62-66,共5页
分析了传统BP算法的不足,利用相关分析法筛选出公路工程主材价格的主要影响因素;在确定BP神经网络结构及选取训练函数的基础上,建立了基于改进BP神经网络算法的公路工程主材价格预测模型,并结合合肥市石屑价格预测的实例,利用建立的预... 分析了传统BP算法的不足,利用相关分析法筛选出公路工程主材价格的主要影响因素;在确定BP神经网络结构及选取训练函数的基础上,建立了基于改进BP神经网络算法的公路工程主材价格预测模型,并结合合肥市石屑价格预测的实例,利用建立的预测模型,采用BP传统算法及附加动量法、自适应学习速率法、两者相结合法等3种改进算法分别预测了合肥市2个季度的石屑价格,并将预测结果进行对比,分析了不同BP算法预测结果之间的差异。结果表明,使用改进的BP神经网络算法进行公路工程主材价格预测,可以将预测误差控制在6%以内,并减少95%左右的训练步数。同时采用自适应学习速率和附加动量改进BP网络的方法相对最有效。 展开更多
关键词 道路工程 工程主材 BP神经网络 自适应学习速率 附加动量 价格预测
下载PDF
BP神经网络的改进及其在初至波拾取中的应用 被引量:17
17
作者 王金峰 罗省贤 《物探化探计算技术》 CAS CSCD 2006年第1期14-17,1-2,共4页
在地震资料处理中,正确的初至时间,是解决复杂地表静校正问题所需的关键参数。将BP神经网络引入到初至波拾取中,并针对经典BP神经网络收敛速度慢、易于陷入局部极小的缺点,利用组合函数法、限幅法、动量因子法及自适应学习率法等进行了... 在地震资料处理中,正确的初至时间,是解决复杂地表静校正问题所需的关键参数。将BP神经网络引入到初至波拾取中,并针对经典BP神经网络收敛速度慢、易于陷入局部极小的缺点,利用组合函数法、限幅法、动量因子法及自适应学习率法等进行了改进。用模拟试验证明了这些改进方法的可行性和有效性,在应用于实际的地震记录初至波拾取中,取得了良好的应用效果。 展开更多
关键词 BP神经网络 自适应学习速率 动量因子 初至波 初至拾取
下载PDF
BP网络的改进研究 被引量:9
18
作者 远祯 罗波 《信息技术》 2006年第2期88-91,共4页
针对标准BP神经网络收敛速度慢,学习精度不高的缺点,在标准BP神经网络算法中附加动量项,并以附加动量项的BP网络算法为基础,提出动量—自适应速率法,动量—可调激活函数法以及动量—自适应速率—激活函数法四种改进算法。以太阳黑子预... 针对标准BP神经网络收敛速度慢,学习精度不高的缺点,在标准BP神经网络算法中附加动量项,并以附加动量项的BP网络算法为基础,提出动量—自适应速率法,动量—可调激活函数法以及动量—自适应速率—激活函数法四种改进算法。以太阳黑子预测为实例分析四种改进算法在BP神经网络迭代次数减少,精度提高两方面的实际效果。事实证明,动量—可调激活函数算法对BP网络结构优化,提高收敛速度有明显效果。 展开更多
关键词 人工神经网络 BP网络 动量因子 可调激活函数 自适应学习速率
下载PDF
基于改进BP神经网络的网络流量预测 被引量:4
19
作者 吉珊珊 柯钢 《计算机与数字工程》 2020年第7期1682-1686,共5页
为了提高网络流量的预测精度,克服BP神经网络预测过程中存在收敛速度慢、易陷入局部极小值的缺点,提出改进BP神经网络的网络流量预测模型。该模型引入动量因子和自适应学习速率来改进BP神经网络。仿真结果表明,改进BP神经网络预测的结... 为了提高网络流量的预测精度,克服BP神经网络预测过程中存在收敛速度慢、易陷入局部极小值的缺点,提出改进BP神经网络的网络流量预测模型。该模型引入动量因子和自适应学习速率来改进BP神经网络。仿真结果表明,改进BP神经网络预测的结果误差更小,精确度更高。 展开更多
关键词 BP神经网络 动量因子 自适应学习速率 网络流量
下载PDF
基于神经网络的字符识别研究 被引量:12
20
作者 杨庆雄 《信息技术》 2005年第4期92-94,96,共4页
神经网络被广泛地应用于字符识别。该算法识别率高,速度快,可适用于多种高噪声环境中,程序流程简洁,实用性很强。但是,这种神经网络识别方法的实现也存在着一些难点,特别是在特征提取,网络优化,网络训练等方面。通过对这些难点的分析,... 神经网络被广泛地应用于字符识别。该算法识别率高,速度快,可适用于多种高噪声环境中,程序流程简洁,实用性很强。但是,这种神经网络识别方法的实现也存在着一些难点,特别是在特征提取,网络优化,网络训练等方面。通过对这些难点的分析,论述了这种利用神经网络实现字符识别的一些关键技术。 展开更多
关键词 BP网络 自适应学习速率 附加动量 局部极小值 纹理信息
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部