在船舶设计过程中经常会出现随机新设计任务,为船舶设计任务调度方案的制订带来一定的困难。基于反向传播(Back Propagation, BP)算法,引入动量-自适应学习率反向传播(Momentum and Self-Adaptive Learning Rate Back Propagation, MSBP...在船舶设计过程中经常会出现随机新设计任务,为船舶设计任务调度方案的制订带来一定的困难。基于反向传播(Back Propagation, BP)算法,引入动量-自适应学习率反向传播(Momentum and Self-Adaptive Learning Rate Back Propagation, MSBP)算法预测随机新设计任务是否可加入制订的船舶设计任务调度方案,以解决扰动情况下的船舶设计任务动态调度(Dynamic Scheduling of Ship Design Tasks, DSSDT)问题。为减小求解空间和训练难度,选择对调度结果具有重大影响的属性作为MSBP算法的特征值。基于抽取的特征值构建MSBP算法模型,并采用大量数据完成对模型的训练。对比试验结果表明,MSBP算法的准确性优于未改进的BP算法,某项随机新设计任务的可调度性与其优先级最为密切。展开更多
由于海面目标所处的海战场环境的复杂性,以及海面目标探测获取的状态数据的不确定、缺失、模糊以及动态变化等,使得海面目标的综合识别非常困难。为了解决这些问题,需要对海战场多传感器目标综合识别中采用智能的神经网络进行应用研究...由于海面目标所处的海战场环境的复杂性,以及海面目标探测获取的状态数据的不确定、缺失、模糊以及动态变化等,使得海面目标的综合识别非常困难。为了解决这些问题,需要对海战场多传感器目标综合识别中采用智能的神经网络进行应用研究。文中提出一种特征级采用LMBP神经网络算法,从多维度学习训练多传感器获取的数据,提取更多相关细节的目标特征属性信息,决策级采用证据理论的智能算法模型,即列文伯格误差反向传播结合证据理论算法的目标综合识别算法(Levenberg Marquardt Back Propagation-Dempster Shafer,简称LMBP-DS算法);然后通过Matlab仿真实验,比较不同的隐藏节点数对识别率的影响,找到LMBP-DS算法最佳的神经网络结构;通过对比实验得出:LMBP-DS算法比动量自适应学习BP-DS算法具有更快的收敛速度,同时具有更稳健高效的识别正确率,从而更适用于海战场多传感器目标综合识别。展开更多
文摘由于海面目标所处的海战场环境的复杂性,以及海面目标探测获取的状态数据的不确定、缺失、模糊以及动态变化等,使得海面目标的综合识别非常困难。为了解决这些问题,需要对海战场多传感器目标综合识别中采用智能的神经网络进行应用研究。文中提出一种特征级采用LMBP神经网络算法,从多维度学习训练多传感器获取的数据,提取更多相关细节的目标特征属性信息,决策级采用证据理论的智能算法模型,即列文伯格误差反向传播结合证据理论算法的目标综合识别算法(Levenberg Marquardt Back Propagation-Dempster Shafer,简称LMBP-DS算法);然后通过Matlab仿真实验,比较不同的隐藏节点数对识别率的影响,找到LMBP-DS算法最佳的神经网络结构;通过对比实验得出:LMBP-DS算法比动量自适应学习BP-DS算法具有更快的收敛速度,同时具有更稳健高效的识别正确率,从而更适用于海战场多传感器目标综合识别。