In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and ...In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and wood pulp cellulose are used to enhance the filtration by improving filter cake structure and properties in the filtration of a biological health product and a highly viscous chemical fiber polymer melt product. The property of solid/liquidsystems, filtration at different flow rates, specitic cake resistance, cake wetness, filtration rate, filtrate turbidity for filter aid selection and evaluation, and operation optimization are investigated. The results are successfully applied to industrial process, .and can be used as a reference for similar filtration applications.展开更多
The adsorption of one monolayer Fe atoms on an ideal GaAs (100) surface is studied by using the self-consistent tight-binding linear muffin-tin orbital method. The Fe adatom chemisorption on Ga- and As-terminatedsurfa...The adsorption of one monolayer Fe atoms on an ideal GaAs (100) surface is studied by using the self-consistent tight-binding linear muffin-tin orbital method. The Fe adatom chemisorption on Ga- and As-terminatedsurface are considered separately. A monolayer of S atoms is used to saturate the dangling bonds on one of the supercellsurfaces. Energies of adsorption systems of an Fe atom on different sites are calculated, and the charge transfers areinvestigated. It is found that Fe-As interaction is stronger than Fe-Ga interaction and Fe atoms prefer to be adsorbed onthe As-terminated surface. It is possible for the adsorbed Fe atoms to sit below the As-terminated surface resulting inan Fe-Ga-As mixed layer. The layer projected density states are calculated and compared with that of the clean surface.展开更多
文摘In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and wood pulp cellulose are used to enhance the filtration by improving filter cake structure and properties in the filtration of a biological health product and a highly viscous chemical fiber polymer melt product. The property of solid/liquidsystems, filtration at different flow rates, specitic cake resistance, cake wetness, filtration rate, filtrate turbidity for filter aid selection and evaluation, and operation optimization are investigated. The results are successfully applied to industrial process, .and can be used as a reference for similar filtration applications.
文摘The adsorption of one monolayer Fe atoms on an ideal GaAs (100) surface is studied by using the self-consistent tight-binding linear muffin-tin orbital method. The Fe adatom chemisorption on Ga- and As-terminatedsurface are considered separately. A monolayer of S atoms is used to saturate the dangling bonds on one of the supercellsurfaces. Energies of adsorption systems of an Fe atom on different sites are calculated, and the charge transfers areinvestigated. It is found that Fe-As interaction is stronger than Fe-Ga interaction and Fe atoms prefer to be adsorbed onthe As-terminated surface. It is possible for the adsorbed Fe atoms to sit below the As-terminated surface resulting inan Fe-Ga-As mixed layer. The layer projected density states are calculated and compared with that of the clean surface.