MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structure...MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structures of MoS_2 samples were investigated.The results revealed that spherical,bulk-like,and flower-like MoS_2 particles assembled by NH4~+-intercalated MoS_2 nano-sheets were synthesized.The morphologies of the MoS_2 samples and their structures(including the slab length and the number of stacked layers) of MoS_2 nano-sheets in these samples could be controlled by adjusting the surfactants.Mono-dispersed spherical MoS_2 particles could be synthesized with PEG via the creation of MoS_2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers.Possible formation mechanisms of these MoS_2 samples created via surfactant-assisted hydrothermal processes are proposed.Further,the catalytic activities of MoS_2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor.The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity.Compared with the other catalysts,it had a smaller particle size,mono-dispersed spherical morphology,shorter slab length,and fewer stacked layers;these were all beneficial to exposing its active edges.This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures.展开更多
Hydroxyl radicals HO are generated under Fenton-like (Fe2++H2O2→HO?+OH?+Fe3+) catalytic conditions upon microwave irradiation. Liquid-phase direct catalytic oxidation of benzene to phenol was obtained using FeSO4 sup...Hydroxyl radicals HO are generated under Fenton-like (Fe2++H2O2→HO?+OH?+Fe3+) catalytic conditions upon microwave irradiation. Liquid-phase direct catalytic oxidation of benzene to phenol was obtained using FeSO4 supported on silica gel as a solid catalyst and hydrogen peroxide as the oxidant. The effects of various parameters, such as the different solvents, the amount of solvent used, the amount of catalyst used, the reaction time, the reaction temperature and the amount of hydrogen peroxide used on the yield of phenol were studied to identify optimum reaction conditions. Conventionally heated reaction gives a phenol yield of 0.6%. A higher phenol yield of 13.9% with a selectivity of 100% is obtained when the reaction mixture was irradiated with micro-wave energy. It is concluded that microwave irradiation offers more effective control of energy input for hydroxyl radical generation that is appropriate for various synthetic reactions.展开更多
Electron-hole separation is a critical step to achieving efficient photocatalysis, towards which use of co-catalysts has become a widely used strategy. Despite the tremendous efforts and demonstrated functions of nobl...Electron-hole separation is a critical step to achieving efficient photocatalysis, towards which use of co-catalysts has become a widely used strategy. Despite the tremendous efforts and demonstrated functions of noble metal co-catalysts, seeking noble metal-free co-catalysts will always be the goal when designing cost- effective, high-performance hybrid photocatalysts. In this work, we demonstrate that MoS~ nanosheets with 1T phase (i.e., octahedral phase) can function as a co-catalyst with multiple merits: (1) Noble-metal-free; (2) high mobility for charge transport; (3) high density of active sites for H2 evolution on basal planes; (4) good performance stability; (5) high light transparency. As demonstrated in both photocatalytic hydrogen production and Rhodamine B degradation, the developed hybrid structure with TiO2 exhibits excellent performance, in sharp contrast to bare TiO2 and the hybrid counterpart with 2H-MoS2.展开更多
基金supported by the National Natural Science Foundation of China(21303186)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA07020300)~~
文摘MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structures of MoS_2 samples were investigated.The results revealed that spherical,bulk-like,and flower-like MoS_2 particles assembled by NH4~+-intercalated MoS_2 nano-sheets were synthesized.The morphologies of the MoS_2 samples and their structures(including the slab length and the number of stacked layers) of MoS_2 nano-sheets in these samples could be controlled by adjusting the surfactants.Mono-dispersed spherical MoS_2 particles could be synthesized with PEG via the creation of MoS_2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers.Possible formation mechanisms of these MoS_2 samples created via surfactant-assisted hydrothermal processes are proposed.Further,the catalytic activities of MoS_2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor.The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity.Compared with the other catalysts,it had a smaller particle size,mono-dispersed spherical morphology,shorter slab length,and fewer stacked layers;these were all beneficial to exposing its active edges.This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures.
基金supported by the National Natural Science Foundation of China (No.50921002)
文摘Hydroxyl radicals HO are generated under Fenton-like (Fe2++H2O2→HO?+OH?+Fe3+) catalytic conditions upon microwave irradiation. Liquid-phase direct catalytic oxidation of benzene to phenol was obtained using FeSO4 supported on silica gel as a solid catalyst and hydrogen peroxide as the oxidant. The effects of various parameters, such as the different solvents, the amount of solvent used, the amount of catalyst used, the reaction time, the reaction temperature and the amount of hydrogen peroxide used on the yield of phenol were studied to identify optimum reaction conditions. Conventionally heated reaction gives a phenol yield of 0.6%. A higher phenol yield of 13.9% with a selectivity of 100% is obtained when the reaction mixture was irradiated with micro-wave energy. It is concluded that microwave irradiation offers more effective control of energy input for hydroxyl radical generation that is appropriate for various synthetic reactions.
文摘Electron-hole separation is a critical step to achieving efficient photocatalysis, towards which use of co-catalysts has become a widely used strategy. Despite the tremendous efforts and demonstrated functions of noble metal co-catalysts, seeking noble metal-free co-catalysts will always be the goal when designing cost- effective, high-performance hybrid photocatalysts. In this work, we demonstrate that MoS~ nanosheets with 1T phase (i.e., octahedral phase) can function as a co-catalyst with multiple merits: (1) Noble-metal-free; (2) high mobility for charge transport; (3) high density of active sites for H2 evolution on basal planes; (4) good performance stability; (5) high light transparency. As demonstrated in both photocatalytic hydrogen production and Rhodamine B degradation, the developed hybrid structure with TiO2 exhibits excellent performance, in sharp contrast to bare TiO2 and the hybrid counterpart with 2H-MoS2.